The statement that best describes a solution is the option C: a mixture having a uniform composition where the components cannot be seen separately and all components are in the same state.<span> That is exactly what a solution is: a homogeneous mixture, the composition is uniform, but it can vary from one solution to other. The components must be in the safe phase, but it can be any phase: solid, liquid or gas. The most classical and clear example is the salt solution, NaCl. When you dissolve a spoon of NaCl in water you will not be able to distinguish nor separating the solute from the solvent, and the mixture will have uniform composition.</span>
M(P)=3.72 g
M(P)=31 g/mol
m(Cl)=21.28 g
M(Cl)=35.5 g/mol
n(P)=m(P)/M(P)
n(P)=3.72/31=0.12 mol
n(Cl)=m(Cl)/M(Cl)
n(Cl)=21.28/35.5=0.60 mol
P : Cl = 0.12 : 0.60 = 1 : 5
PCl₅ - is the empirical formula
Answer:
3853 g
Step-by-step explanation:
M_r: 107.87
16Ag + S₈ ⟶ 8Ag₂S; ΔH°f = -31.8 kJ·mol⁻¹
1. Calculate the moles of Ag₂S
Moles of Ag₂S = 567.9 kJ × 1 mol Ag₂S/31.8kJ = 17.858 mol Ag₂S
2. Calculate the moles of Ag
Moles of Ag = 17.86 mol Ag₂S × (16 mol Ag/8 mol Ag₂S) = 35.717 mol Ag
3. Calculate the mass of Ag
Mass of g = 35.717 mol Ag × (107.87 g Ag/1 mol Ag) = 3853 g Ag
You must react 3853 g of Ag to produce 567.9 kJ of heat
<u>Answer:</u> The mass of methanol that must be burned is 24.34 grams
<u>Explanation:</u>
We are given:
Amount of heat produced = 581 kJ
For the given chemical equation:

By Stoichiometry of the reaction:
When 764 kJ of heat is produced, the amount of methanol reacted is 1 mole
So, when 581 kJ of heat will be produced, the amount of methanol reacted will be = 
To calculate mass for given number of moles, we use the equation:

Moles of methanol = 0.7605 moles
Molar mass of methanol = 32 g/mol
Putting values in above equation, we get:

Hence, the mass of methanol that must be burned is 24.34 grams
There are 237. 5 g of Sulfur,S in 475 g of SO2?
<h3 />
<h3>Calculation of grams of Sulfur</h3>
From the question, we can say that
- The molar mass of sulfur = 32 g/mol
- The molar mass of oxygen = 16 g/mol
Therefore,
The molar mass for SO2 = 32 + (16 × 2) g/mol = 64 g/mol
Now,
If 1 mole of SO2 contains 1 mole of S
Then 64 g of SO2, will contain 32g of S;
Such that
475 g of SO2 will give {
} = 237. 5 g of Sulfur.
Learn more about molar mass here :brainly.com/question/18291695