1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
12

As galáxias são maiores do que os enxames de estrelas?

Physics
1 answer:
GuDViN [60]3 years ago
8 0

▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Responder \;\;a}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪

As galáxias são geralmente maiores do que os aglomerados de estrelas. Como disse Geller ~ As galáxias são como as cidades em que vivem os aglomerados de estrelas. As galáxias podem ter cerca de milhares ou mais aglomerados de estrelas ~

I hope it helps ~

You might be interested in
Two positive point charges of 12uc and Suc
GarryVolchara [31]

Answer:

54 N

Explanation:

We have two positive charges 12uC and 5 uC ,they are kept at a distance of 10cm.

We have a relation for force between two charges q1,q2 as

F=\frac{kq1q2}{r^{2} }

Value of k is 9*10^9

On substituting the values into the equation we get,

F=\frac{9*10^9*12*5}{10^9*10}\\\\  F=54N

Hence the force between them is 54 N.

7 0
3 years ago
1. 412.9 g of dry ice sublimes at room temperature. a. What’s changing? --- sublimation b. What constant will you use? ----- 25.
hoa [83]

1. 236 kJ

a. The phase (or state of matter) of the substance: from solid state to gas state (sublimation)

b. The enthalphy of sublimation, given by: \lambda=571 J/g

c. The equation to use will be Q=m\lambda, where m is the mass of dry ice and \lambda is the enthalpy of sublimation

d. The energy is being absorbed, because the heat is transferred from the environment to the dry ice: as a consequence, the bonds between the molecules of dry ice break and then move faster and faster, and so the substance turns from solid into gas directly.

e. The amount of energy being transferred is

Q=m\lambda=(412.9 g)(571 J/g)=2.36\cdot 10^5 J=236 kJ

2.  165 kJ

a. The phase (or state of matter) of the substance: from gas state to liquid state (condensation)

b. The latent heat of vaporisation of water, given by \lambda=2260 J/g

c. The equation to use will be Q=m\lambda, where m is the mass of steam that condenses and \lambda is the latent heat of vaporisation

d. The energy is being released, since the substance turns from a gas state (where molecules move faster) into liquid state (where molecules move slower), so the internal energy of the substance has decreased, therefore heat has been released

e. The amount of energy being transferred is

Q=m\lambda=(72.9 g)(2260 J/g)=1.65\cdot 10^5 J=165 kJ

3. 3.64 kJ

a. Only the temperature of the substance (which is increasing)

b. The specific heat capacity of silver, which is C_s = 0.240 J/gC

c. The equation to use will be Q=m C_s \Delta T, where m is the mass of silver, Cs is the specific heat capacity and \Delta T the increase in temperature

d. The energy is being absorbed by the silver, since its temperature increases, this means that its molecules move faster so energy should be provided to the silver by the surroundings

e. The amount of energy being transferred is

Q=m C_s \Delta T=(39.2 g)(0.240 J/gC)(412.9^{\circ}C-25.9^{\circ}C)=3641=3.64 kJ

4. 89 kJ

a. Both the phase of the substance (from solid to liquid) and then the temperature

b. The latent heat of fusion of ice: \lambda=334 J/g and the specific heat capacity of water: C_s=4.186 J/gC

c. The equation to use will be Q=m\lambda + m C_s \Delta T, where m is the mass of ice, \lambda the latent heat of fusion of ice, Cs is the specific heat capacity of water and \Delta T the increase in temperature

d. The energy is being absorbed by the ice, at first to break the bonds between the molecules of ice and to cause the melting of ice, and then to increase the temperature of the water

e. The amount of energy being transferred is

Q=m\lambda +m C_s \Delta T=(156.3 g)(334 J/g)+(156.3 g)(4.186 J/gC)(56.232^{\circ}C-0^{\circ}C)=8.9\cdot 10^4 J=89 kJ

6 0
3 years ago
One twin sets off on a long space voyage traveling at 0.9 c, while the other stays on Earth. When she returns 60 years later, th
Sergio [31]

Answer:

This is the twin paradox.

3 0
3 years ago
Si olvidas un trozo de chocolate cerca de la estufa encendida, al rato, observa tu chocolate derretido, ¿Cómo estarán las partíc
eduard

Answer:

partículas estarían separadas

Explanation:

ya que con el calor las partículas se alborotan y con frío se congelan

4 0
3 years ago
A wrench 0.500 m long is applied to a nut with a force of 80.0 N. Because of the cramped space, the force must be exerted upward
riadik2000 [5.3K]

Answer:

Torque, \tau=34.6\ N.m

Explanation:

It is given that,

Length of the wrench, l = 0.5 m

Force acting on the wrench, F = 80 N

The force is acting upward at an angle of 60.0° with respect to a line from the bolt through the end of the wrench. We need to find the torque is applied to the nut. We know that torque acting on an object is equal to the cross product of force and distance. It is given by :

\tau=Fr\ sin\theta

\tau=80\times 0.5\ sin(60)

\tau=34.6\ N.m

So, the torque is applied to the nut is 34.6 N.m. Hence, this is the required solution.

7 0
3 years ago
Other questions:
  • A what occurs when light changes direction after colliding with particles of matter
    10·1 answer
  • Can pockets of vacuum persist in an ideal gas? Assume that a room is filled with air at 20∘C and that somehow a small spherical
    5·1 answer
  • Pls help asap! - flvs btw
    6·1 answer
  • According to Jean Piaget, unrealistic idealism often occurs in adolescence as a result of __________.
    11·2 answers
  • If the car travels thrice(3times) around the track,who much is the total distance covered?​
    6·1 answer
  • Which quantity does not change when there is an increase in temperature?​
    12·1 answer
  • Microwaves have a higher frequency than radio waves, so why is it that they don't travel faster?
    13·1 answer
  • How does the egg drop project apply to everyday life​
    15·1 answer
  • The tensile stress in a thick copper bar is 99.5 % of its elastic breaking point of 13.0× 10¹⁰ N/m² . If a 500-Hz sound wave is
    11·1 answer
  • eight points are in/on the circle of radius 10cm. show that distance between some two points is less than 1cm.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!