4.96 would be you’re answer
Answer: It should a accepter
Explanation: because water is often used as solvent for solutes...there are exceptions
Answer:
3.07 Cal/g
Explanation:
Step 1: Calculate the heat absorbed by the calorimeter
We will use the following expression.
Q = C × ΔT
where,
- C: heat capacity of the calorimeter (37.60 kJ/K = 37.60 kJ/°C)
- ΔT: temperature change (2.29 °C)
Q = 37.60 kJ/°C × 2.29 °C = 86.1 kJ
According to the law of conservation of energy, the heat released by the candy has the same magnitude as the heat absorbed by the calorimeter.
Step 2: Convert 86.1 kJ to Cal
We will use the conversion factor 1 Cal = 4.186 kJ.
86.1 kJ × 1 Cal/4.186 kJ = 20.6 Cal
Step 3: Calculate the number of Cal per gram of candy
20.6 Cal/6.70 g = 3.07 Cal/g
Answer:
Electrons are trapped inside the atom because of the attraction forces with positively charged protons that are found in the nucleus.
Answer:
a. 3; b. 5; c. 10; d. 12
Explanation:
pH is defined as the negative log of the hydronium concentration:
pH = -log[H₃O⁺] (hydronium concentration)
For problems a. and b., HCl and HNO₃ are strong acids. This means that all of the HCl and HNO₃ would ionize, producing hydronium (H₃O⁺) and the conjugate bases Cl⁻ and NO₃⁻ respectively. Further, since all of the strong acid ionizes, 1 x 10⁻³ M H₃O⁺ would be produced for a., and 1.0 x 10⁻⁵ M H₃O⁺ for b. Plugging in your calculator -log[1 x 10⁻³] and -log[1.0 x 10⁻⁵] would equal 3 and 5, respectively.
For problems c. and d. we are given a strong base rather than acid. In this case, we can calculate the pOH:
pOH = -log[OH⁻] (hydroxide concentration)
Strong bases similarly ionize to completion, producing [OH⁻] in the process; 1 x 10⁻⁴ M OH⁻ will be produced for c., and 1.0 x 10⁻² M OH⁻ produced for d. Taking the negative log of the hydroxide concentrations would yield a pOH of 4 for c. and a pOH of 2 for d.
Finally, to find the pH of c. and d., we can take the pOH and subtract it from 14, giving us 10 for c. and 12 for d.
(Subtracting from 14 is assuming we are at 25°C; 14, the sum of pH and pOH, changes at different temperatures.)