The Lamborghini SCV12 has 830 horse power.
Answer:
a) 
b) attached below
c) type zero system
d) k > 
e) The gain K increases above % error as the steady state speed increases
Explanation:
Given data:
Motor voltage = 12 v
steady state speed = 200 rad/s
time taken to reach 63.2% = 1.2 seconds
<u>a) The transfer function of the motor from voltage to speed</u>
let ;
be the transfer function of a motor
when i/p = 12v then steady state speed ( k1 ) = 200 rad/s , St ( time constant ) = 1.2 sec
hence the transfer function of the motor from voltage to speed
= 
<u>b) draw the block diagram of the system with plant controller and the feedback path </u>
attached below is the remaining part of the detailed solution
c) The system is a type-zero system because the pole at the origin is zero
d) ) k > 
Answer:
a) v = +/- 0.323 m/s
b) x = -0.080134 m
c) v = +/- 1.004 m/s
Explanation:
Given:
a = - (0.1 + sin(x/b))
b = 0.8
v = 1 m/s @ x = 0
Find:
(a) the velocity of the particle when x = -1 m
(b) the position where the velocity is maximum
(c) the maximum velocity.
Solution:
- We will compute the velocity by integrating a by dt.
a = v*dv / dx = - (0.1 + sin(x/0.8))
- Separate variables:
v*dv = - (0.1 + sin(x/0.8)) . dx
-Integrate from v = 1 m/s @ x = 0:
0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5
0.5v^2 = 0.8cos(x/0.8) - 0.1x - 0.3
- Evaluate @ x = -1
0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3
v = sqrt (0.104516)
v = +/- 0.323 m/s
- v = v_max when a = 0:
-0.1 = sin(x/0.8)
x = -0.8*0.1002
x = -0.080134 m
- Hence,
v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134
v = sqrt (0.504)
v = +/- 1.004 m/s
Answer:
R= 1.25
Explanation:
As given the local heat transfer,

But we know as well that,

Replacing the values

Reynolds number is define as,

Where V is the velocity of the fluid and \upsilon is the Kinematic viscosity
Then replacing we have



<em>*Note that A is just a 'summary' of all of that constat there.</em>
<em>That is
</em>
Therefore at x=L the local convection heat transfer coefficient is

Definen that we need to find the average convection heat transfer coefficient in the entire plate lenght, so

The ratio of the average heat transfer coefficient over the entire plate to the local convection heat transfer coefficient is

Answer:
A piece of code hidden in spread sheet