Answer:
see explanation
Explanation:
An AX₂E₂ geometry is derived from an AX₄ parent geometry and is based upon 4 regions of electron density about the central element and defines a tetrahedral geometry and the geometry is bent angular.
An example is the water molecule (H₂O) with two covalent O - H bonds and two free pair electrons on the central oxygen element.
Answer:
The elements are in the same column/group IIA.
See the explanation below, please.
Explanation:
The elements Calcium, Strontium, Beryllium, Magnesium, Barium and Radio, belong to the group of alkaline earth metals located in group IIA of the periodic table, they require 2 electrons to complete their octet (they have 2 valence electrons). reagents than alkali metals.
Answer:
Bin 1 points to a carbon bonded to a double bonded carbon and single bonded to two hydrogens. --- trigonal planar, tetrahedral
Bin 2 points to a carbon double bonded to a carbon and single bonded to a carbon and one hydrogen.------- trigonal planar, tetrahedral
Bin 3 is a carbon single bonded to two carbons and single bonded to two hydrogens. ----- tetrahedral, tetrahedral
Bin 4 is the same as bin 3.--------tetrahedral, tetrahedral
Bin 5 is a carbon triple bonded to a carbon and single bonded to a carbon.---- linear, tetrahedral
Bin 6 is triple bonded to a carbon and single bonded to a hydrogen.---linear, tetrahedral
Explanation:
A single C-C or C-H bond is in a tetrahedral geometry, the carbon atom is bonded to four species with a bond angle of 109°.
A C=C bond is trigonal planar with a bond angle of 120°.
Lastly, a C≡C bond has a linear geometry with a bond angle of 180° between the atoms of the bond.
Answer:
Option 6 ) Neutralization
Explanation:
For this case, the missing coefficient would be a "6" before the H₂O, within final products (right side of the equiation), hence, the final reaction should be:
2H₃PO₄ + 3Ba(OH)₂ ------> Ba₃(PO₄)₂ + 6H₂O
You should have in mind that the amount of atoms at each side of the chemical equation should be the same, so as to comply with the principle of mass conservation. If you add "6" on the left side of the H₂O, the equation will be balanced (for each side, lef and right, you will have: 12H, 2P, 14O and 3Ba)
Lastly, this is a chemical neutralization reaction, where an acid (H₃PO₄) is reacting with a base (Ba(OH)₂) in order to finally obtain a neutral salt (Ba₃(PO₄)₂) and water (H₂O)