Answer:
0.74 grams of methane
Explanation:
The balanced equation of the combustion reaction of methane with oxygen is:
it is clear that 1 mol of CH₄ reacts with 2 mol of O₂.
firstly, we need to calculate the number of moles of both
for CH₄:
number of moles = mass / molar mass = (3.00 g) / (16.00 g/mol) = 0.1875 mol.
for O₂:
number of moles = mass / molar mass = (9.00 g) / (32.00 g/mol) = 0.2812 mol.
- it is clear that O₂ is the limiting reactant and methane will leftover.
using cross multiplication
1 mol of CH₄ needs → 2 mol of O₂
??? mol of CH₄ needs → 0.2812 mol of O₂
∴ the number of mol of CH₄ needed = (0.2812 * 1) / 2 = 0.1406 mol
so 0.14 mol will react and the remaining CH₄
mol of CH₄ left over = 0.1875 -0.1406 = 0.0469 mol
now we convert moles into grams
mass of CH₄ left over = no. of mol of CH₄ left over * molar mass
= 0.0469 mol * 16 g/mol = 0.7504 g
So, the right choice is 0.74 grams of methane
Answer:
pH = 12.52
Explanation:
Given that,
The [H+] concentration is
.
We need to find its pH.
We know that, the definition of pH is as follows :
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Put all the values,
![pH=-log[3\times 10^{-13}]\\\\pH=12.52](https://tex.z-dn.net/?f=pH%3D-log%5B3%5Ctimes%2010%5E%7B-13%7D%5D%5C%5C%5C%5CpH%3D12.52)
So, the pH is 12.52.
Answer:
Infrared thermography
Explanation:
Infrared thermography is equipment or method, which detects infrared energy emitted from object, converts it to temperature, and displays image of temperature distribution. ... We call our equipment as infrared thermography considering such generalization of the terminology.
Potassium ......................