2H(+) + SO4(2-) + Ca(2+) + 2I(-) -> CaSO4(s) + 2H(+) + 2I(-)
The signs in brackets are the subscripts for the charge of the ion. This is the complete ionic equation. The net ionic equation is:
Ca(2+) + SO4(2-) -> CaSO4
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
Answer:
A potassium atom (atomic number 19) and a bromine atom (atomic number 35) can form a chemical bond through a transfer of one electron. The potassium ion that forms has 18 electrons. What best describes the bromide ion that forms? It is a negative ion that has one more valence electron than a neutral bromine atom.
Explanation:
Answer:
just guessing, but hydrolisis indicates ; hydro= h2o. lisis= destruction.
Explanation:
in my training, this wud mean destruction of water, or loss of water in the human body.
2 equalibrate, takes sodium chloride, to retain fluids by IV.