27/208 = normality
12 x 10^-2 approx = normality
nw Ka = 14.3 x 10^-3
pKa = 3 - log 14
now, after getting the pKa put it in formula :
pH = pKa + log concn of ion/concn of salt and you'll get it
hope this helps
The theoretical yield of NaBr given that 2.36 moles of FeBr₃ reacts is 7.08 moles
<h3>Balanced equation </h3>
2FeBr₃ + 3Na₂S → Fе₂S₃ + 6NaBr
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
<h3>How to determine the theoretical yield of NaBr</h3>
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
Therefore,
2.36 moles FeBr₃ will react to produce = (2.36 × 6) / 2 = 7.08 moles of NaBr
Therefore,
Thus, the theoretical yield of NaBr is 7.08 moles
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
The peptide given above is made up of the following amino acids: glycine [G], leucine [L], valine [V], isoleucine [I] and tryptophan [W]. These amino acids are joined together by amide bond to form peptide. Peptides usually have two terminals, the N terminal and the C terminal. For GLVIW, the C terminal end amino acid is tryptophan, that is the last amino acid on the peptide chain. The N terminal amino acid is glycine, that is, the first amino acid on the peptide chain.
Answer: The unknown solution had the lower concentration
Explanation: concentration will always move from higher to lower region. If the concentration of the unknown solution has increased, it therefore means that the initial concentration of the unknown solution was low