The answer would be erin out of all of them thank me later :)
Light as a wave: Light can be described (modeled) as an electromagnetic wave. ... This changing magnetic field then creates a changing electric field and BOOM - you have light. Unlike many other waves (sound, water waves, waves in a football stadium), light does not need a medium to “wave” in.
Explanation:
Force=mass x acceleration
f= 0.5 x40
f=20N
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:

where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,

Now, we can apply First Law of Thermodynamics as follows:

where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>
GPE= 70.56 J -------------------> GPE= mgh-------------> X= height
70.56 = 6(kg) * 9.8(m/s/s) * X
70.56 = 58.8X
70.56/58.8= 58.8X/58.8
X= 1.2
The height is 1.2 feet or meters (whatever unit you are using in this problem)