The electron geometry of a water molecule is tetrahedral even though the molecular geometry is bent.
As water molecule hybridisation is sp³ that provides it a electron geometry tetrahedral but due to presence of 2 lone pairs and 2 bond pairs its molecular geometry is bent.
The hybridisation sp³ makes electron geometry of a water molecule tetrahedral but the presence of 2 lone pairs makes its molecular geometry bent
Answer:
I^3, aFeO BfEi^3 O, c, dFe^2 O^3
Explanation:
The number of moles that are 1.50 x10^23 molecules of NH3 are
=0.249 moles
<u><em> calculation</em></u>
The number of moles is calculated using Avogadro's law constant
that is According to Avogadro's law
1 moles of a substance = 6.02 x10^23 molecules
? moles = 1.50 x10^23 molecules
by cross multiplication
= [( 1.50 x 10^23 molecules x 1 moles) / (6.02 x10^23)] = 0.249 moles
Answer : The value of
is -49.6 kJ/mol
Explanation :
First we have to calculate the reaction quotient.
Reaction quotient (Q) : It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.
The given balanced chemical reaction is,

The expression for reaction quotient will be :
![Q=\frac{[ADP][HPO_4^{2-}]}{[ATP]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BADP%5D%5BHPO_4%5E%7B2-%7D%5D%7D%7B%5BATP%5D%7D)
In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.
Given:
= 5.0 mM
= 0.60 mM
= 5.0 mM
Now put all the given values in this expression, we get

Now we have to calculate the value of
.
The formula used for
is:
............(1)
where,
= Gibbs free energy for the reaction = ?
= standard Gibbs free energy = -30.5 kJ/mol
R = gas constant = 
T = temperature = 
Q = reaction quotient = 
Now put all the given values in the above formula 1, we get:


Therefore, the value of
is -49.6 kJ/mol