1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
victus00 [196]
3 years ago
7

Can you classify matter based on chemical properties

Physics
1 answer:
VARVARA [1.3K]3 years ago
6 0

Answer:

Explanation:

Matter can be broken down into two categories: pure substances and mixtures. Pure substances are further broken down into elements and compounds. Mixtures are physically combined structures that can be separated into their original components. A chemical substance is composed of one type of atom or molecule.

You might be interested in
If a negative charge is initially at rest in an electric field, will it move toward a region of higher potential or lower potenti
monitta

Answer with explanation :

The negative sign means that the potential energy decreases by the movement of the electron.

negative charge at rest in an electric field moves toward the region of an electric field , so that its potential energy will diminish and change into the kinetic energy of motion. The total energy remains constant.

Positive charges will move downhill because of convention. It is to stay in accordance with other potential theories, particularly gravity, where the "charge" is mass, that moves downwards in the gravitational potential field expressed by ϕ(r)=−GM|r|ϕ(r)=−GM|r|. In an electronic system, howbeit, positive charges are fixed in their position within a component (e.g., a wire), therefore instead of the mobile,the negative charges, electrons, move uphill.

6 0
3 years ago
Blank is how high or low you think a sound is
vfiekz [6]
<span>The word is "pitch", which is exactly that: How "high" or "low" a sound is.</span>
3 0
4 years ago
Read 2 more answers
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
What 2 things do you need to make sound? help ASAP
inessss [21]

Answer:

- A vibrating object

- a medium to travel

HOPE IT HELPS :)

PLEASE MARK IT THE BRAINLIEST!

8 0
3 years ago
Magnet A has twice the magnetic field strength of magnet B and pulls on magnet B with a force of 100 N. The amount of force that
son4ous [18]

The force exerted by the magnetic in terms of the magnetic field is,

F\propto B

Where B is the magnetic fied strength and F is the force.

Thus, if the magnetic A has twice magnetic field strength than the magnet B,

Then,

B_A=2B_B

Thus, the force exerted by the magnet B is,

\begin{gathered} F_B\propto B_B \\ F_B\propto\frac{B_A}{2} \\ F_B=\frac{F_A}{2} \\ F_B=\frac{100}{2} \\ F_B=50\text{ N} \end{gathered}

Thus, the force exerted by the magnet B on magnet A is 50 N.

The force exerted by the magnet A exerts on the magnet B is exactly 100 N as given.

Hence, the option B is the correct answer.

3 0
1 year ago
Other questions:
  • A family ice show is held at an enclosed arena. The skaters perform to music with level 75.0 dB. This level is too loud for your
    9·1 answer
  • Which type of climate does Florida have due to its latitude?
    11·2 answers
  • A train travels 4,000,000 m from New York to Los Angeles and takes about 42 hours to make the entire trip. What is its speed in
    15·1 answer
  • A block of mass m=1kg sliding along a rough horizontal surface is traveling at a speed v0=2m/s when it strikes a massless spring
    11·1 answer
  • How much energy, in Joules, is needed to raise the temperature from 25.87°C to 33.16°C in a 2.66 kg block of each of the followi
    13·1 answer
  • Please help and quick!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    7·1 answer
  • What is the right hand rule for magnetic Force?
    12·1 answer
  • Why would the bulb not light?
    7·1 answer
  • PLEASE HELP!!!!!!!!! 30 POINTS
    15·1 answer
  • An object has an acceleration of 12.0 m/s/s. If the mass of this object were tripled (with no change in its net force), then its
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!