1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liono4ka [1.6K]
3 years ago
6

Do you get a better performance using premier gasoline (Octane number 93) for your compact car?

Engineering
1 answer:
topjm [15]3 years ago
6 0

Answer:

Yes

Explanation:

As we know that octane number resist the engine from knocking.If knocking can prevent that automatically the performance of engine will increases.If octane number is 100 then it means that knocking tendency in the engine is zero.So higher the octane number better will the performance of the engine.

Generally octane number is 87 but for premier gasoline is 92 or 93.

So we can say that if octane number is  93 then car will give better performance

You might be interested in
What must engineers keep in mind so that their solutions will be appropriate?
vekshin1

Answer:

Context

Explanation:

It is of great value for an engineer to keep the context of his/her experiment in mind.

7 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
A sum of $500,000 will be invested by a firm two years from now. If money is worth 12%, what will be the worth of this investmen
notka56 [123]

Answer:

investment 10 years from now is $1,238,000 .

Explanation:

given data

sum = $500,000

rate = 12% =0.12

total time = 10 year

solution

as present value After 2 years from now is $500,000

so time period is now = 8 year  ( 10 - 2 )

so we apply future value formula that is

Future value  = present value × (1+r)^{t}   ............1

put here value we get

Future value  = $500,000 × (1+0.12)^{8}  

Future value  = $500,000 × 2.476

Future value  = $1,238,000  

so investment 10 years from now is $1,238,000 .

8 0
3 years ago
Clarifying the issues of a problem is the _____ step in the problem solving process.
ratelena [41]
The answer is 2nd Step because the first step is to define the problem and third is to define your goals
7 0
3 years ago
Learning the key concepts of each approach is essential to successful management of a project. What type of unpredictability is
Levart [38]

Answer:

lemme write it down

Explanation:

hold down okay

3 0
3 years ago
Other questions:
  • An air-standard Otto cycle has a compression ratio of 6 and the temperature and pressure at the beginning of the compression pro
    13·1 answer
  • Consider a system with two tasks, Task1 and Task2. Task1 has a period of 200 ms, and Task2 has a period of 300 ms. All tasks ini
    5·1 answer
  • Electricity is generated in two forms namely………A. Alternating current and wave form B. Alternating current and basic current C.
    7·2 answers
  • Which branch of engineering studies the physical behavior of metallic elements?
    8·2 answers
  • Sublimation is to change from
    7·2 answers
  • 1. How does manufacturing help strengthen<br> the economy?
    15·1 answer
  • At a construction site, there are constant arguments and conflicts amongst workers of different contractors and sub-contractors.
    14·1 answer
  • Problem 89:A given load is driven by a 480 V six-pole 150 hp three-phase synchronous motor with the following load and motor dat
    11·1 answer
  • Why is it important to follow the engineering design process before building a prototype
    13·1 answer
  • Integrated circuits typically are mounted on ________, which are then plugged into the system board.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!