The star with apparent magnitude 2 is more brighter than 7.
To find the answer, we have to know about apparent magnitude.
<h3>What is apparent magnitude?</h3>
- 100 times as luminous as a star with an apparent brightness of 7 is a star with a magnitude of 2.
- The apparent magnitude of bigger stars is always smaller.
- The brightest star in the night sky is Sirius.
- The brightness of a star or other celestial object perceived from Earth is measured in apparent magnitude (m).
- The apparent magnitude of an object is determined by its inherent luminosity, its distance from Earth, and any light extinction brought on by interstellar dust in the path of the observer's line of sight.
Thus, we can conclude that, the star with apparent magnitude 2 is more brighter than 7.
Learn more about the apparent magnitude here:
brainly.com/question/350008
#SPJ4
Answer:
The horizontal velocity is 
Explanation:
From the question we are told that
The mass of the pumpkin is 
The distance of the the car from the building's base is 
The height of the roof is 
The height is mathematically represented as

Where g is the acceleration due to gravity which has a value of 
substituting values

making the time taken the subject of the formula


The speed at which the pumpkin move horizontally can be represented mathematically as

substituting values


Streams carry sediment, like pebbles, in their flows. The pebbles can be in a variety of locations in the flow, depending on it's size, the balance between the upwards velocity on the pebble (drag and lift forces), and it's settling velocity.
The distance covered on the floor after leaving the ramp is the dependent variable.
- As a result of the marble's size, the substance it is constructed of, and the angle at which it is placed onto the ground, the distance it rolls varies.
- Therefore, the angle at which the marble is released onto the ground, the type of material used to make the stone, or its size can all be considered independent variables.
<h3>What is Independent variable?</h3>
- There are independent and dependent variables in every experiment.
- A variable is considered independent if its change is not influenced by the change in another variable or factor.
<h3>What is Dependent variable?</h3>
In any experiment, the dependent variable must be measured or determined, and it must change as the independent variable does.
Learn more about independent and dependent variable here:
brainly.com/question/1479694
#SPJ4
Answer:
Part A:
The proton has a smaller wavelength than the electron.
<
Part B:
The proton has a smaller wavelength than the electron.
<
Explanation:
The wavelength of each particle can be determined by means of the De Broglie equation.
(1)
Where h is the Planck's constant and p is the momentum.
(2)
Part A
Case for the electron:

But 


Case for the proton:


Hence, the proton has a smaller wavelength than the electron.
<em>Part B </em>
For part b, the wavelength of the electron and proton for that energy will be determined.
First, it is necessary to find the velocity associated to that kinetic energy:


(3)
Case for the electron:

but


Then, equation 2 can be used:

Case for the proton :

But 


Then, equation 2 can be used:

Hence, the proton has a smaller wavelength than the electron.