We have that the speed of a body covering a distance of 320 km in 4h is mathematically given as
V=22.22m/s is
<h3 /><h3>
Speed</h3>
From the question we are told
calculate the speed of a body covering a distance of 320 km in 4h
Generally the equation for the Speed is mathematically given as

V=22.22m/s
Hence
The speed of a body covering a distance of 320 km in 4h is
V=22.22m/s
For more information on Speed visit
brainly.com/question/7359669
Statement :- We assume the orthagonal sequence
in Hilbert space, now
, the Fourier coefficients are given by:

Then Bessel's inequality give us:

Proof :- We assume the following equation is true

So that,
is projection of
onto the surface by the first
of the
. For any event, 
Now, by Pythagoras theorem:


Now, we can deduce that from the above equation that;

For
, we have

Hence, Proved
Answer:
i = 61 degree
Explanation:
Given,

Now, by the snell's law

Now,
Sin i / sin r = n 2 / n 1
sin i / sin r (45 - 24.09) = 2.45 / 1
i = 60.97 degree
Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
It makes the data thet they collect more reliable so if they need the data again, they have already tested it a few times so therefor they know that it is right.