1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Papessa [141]
3 years ago
14

Which of the following elements is commonly found in the Earth's crust, living matter, oceans, and atmosphere? A. carbon B. argo

n C. bromine D. zinc
Physics
2 answers:
jekas [21]3 years ago
8 0
The answer is carbon.
OverLord2011 [107]3 years ago
5 0
I'm pretty sure it's A. carbon
You might be interested in
If you quadruple the temperature of a black body, by what factor will the total energy radiated per second per square meter incr
Anastaziya [24]
Radiant heat transfer is proportional to the 4-th power of absolute temperature.
Therefore if the temperature is quadrupled, the radiant heat energy will increase by a factor of
4⁴ = 256

Answer: 256
8 0
3 years ago
A flutist assembles her flute in a room where the speed of sound is 342m/s . When she plays the note A, it is in perfect tune wi
USPshnik [31]

Answer:

a.3Hz

b.0.0034m

Explanation:

First, we know the flute is an open pipe, because open pipe as both end open and a close organ pipe as only one end close.

The formula relating the length and he frequency is giving as

f=\frac{nv}{2l}\\.

a.we first determine the length of the flute at the fundamental frequency i.e when <em>n</em>=1 and when the speed is in the 342m/s

Hence from

f=\frac{nv}{2l}\\\\l=\frac{342}{2*440}\\ l=0.389m\\.

since the value of the length will remain constant, we now use the value to determine the frequency when the air becomes hotter and the speed becomes 345m/s.

f=\frac{nv}{2l} \\f=\frac{345}{2*0.389}\\f=443.4Hz

Hence the require beat is

B=/f_{1}-f_{2}/\\B=/440-443/\\B=3Hz.

b. since the length is dependent also on the speed and frequency, we determine the new length when she plays with a fundamental frequency when the speed of sound is 345m/s

using the formula

L_{new}=\frac{v}{2f}\\\\L_{new}=\frac{345}{2*440}\\\\L_{new}=0.39204

Now to determine the extension,

L_{extend}=L_{new}-L_{old}\\L_{extend}=0.39204- 0.38864\\L_{extend}=0.0034m\\

4 0
3 years ago
You are taking an image of a patient who is in extreme discomfort while participating in the CT scanning process. Which of the f
brilliants [131]

Answer:

Interpersonal skills

Explanation:

4 0
3 years ago
Please help (will mark brainliest)
serg [7]

Answer:

if im not mistaken i think its d let me know if correct plz

7 0
2 years ago
Read 2 more answers
Now let’s apply the work–energy theorem to a more complex, multistep problem. In a pile driver, a steel hammerhead with mass 200
andrew11 [14]

Answer:

a) v = 7.67

b) n = 81562 N

Explanation:

Given:-

- The mass of hammer-head, m = 200 kg

- The height at from which hammer head drops, s12 = 3.00 m

- The amount of distance the I-beam is hammered, s23 = 7.40 cm

- The resistive force by contact of hammer-head and I-beam, F = 60.0 N

Find:-

(a) the speed of the hammerhead just as it hits the I-beam and

(b) the average force the hammerhead exerts on the I-beam.

Solution:-

- We will consider the hammer head as our system and apply the conservation of energy principle because during the journey of hammer-head up till just before it hits the I-beam there are no external forces acting on the system:

                                   ΔK.E = ΔP.E

                                  K_2 - K_1 = P_1- P_2

Where,  K_2: Kinetic energy of hammer head as it hits the I-beam

             K_1: Initial kinetic energy of hammer head ( = 0 ) ... rest

             P_2: Gravitational potential energy of hammer head as it hits the I-beam. (Datum = 0)

             P_1: Initial gravitational potential energy of hammer head      

- The expression simplifies to:

                                K_2 = P_1

Where,                     0.5*m*v2^2 = m*g*s12

                                v2 = √(2*g*s12) = √(2*9.81*3)

                                v2 = 7.67 m/s

- For the complete journey we see that there are fictitious force due to contact between hammer-head and I-beam the system is no longer conserved. All the kinetic energy is used to drive the I-beam down by distance s23. We will apply work energy principle on the system:

                               Wnet = ( P_3 - P_1 ) + W_friction

                               Wnet = m*g*s13 + F*s23

                               n*s23 = m*g*s13 + F*s23

Where,    n: average force the hammerhead exerts on the I-beam.

               s13 = s12 + s23

Hence,

                             n = m*g*( s12/s23 + 1) + F

                             n = 200*9.81*(3/0.074 + 1) + 60

                             n = 81562 N

                               

                                                   

6 0
3 years ago
Other questions:
  • A 0.145-kg baseball pitched horizontally at 27.0 m/s strikes a bat and pops straight up to a height of 31.5 m. If the contact ti
    12·1 answer
  • we measure a voltage difference of 5.0 V between two points on the conducting paper between two parallel conducting electrodes.
    6·1 answer
  • Can someone tell me a food chain then explain how ur food chain works?! Plz
    10·1 answer
  • The resistivity of a metal increases slightly with increased temperature. This can be expressed as rho=rho0[1+α(T−T0)], where T0
    5·1 answer
  • What to forces keep things In orbit
    9·2 answers
  • What is newtons first law of motion​
    8·1 answer
  • A car is traveling at 40 m/s for 20 seconds. How far did it travel in this time?
    6·1 answer
  • What does hypothesis mean
    7·2 answers
  • If you rub a balloon on a sweater, which will have more electrons?
    13·1 answer
  • Please help for 21! will mark brainliest
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!