Answer:
<u>For M84:</u>
M = 590.7 * 10³⁶ kg
<u>For M87:</u>
M = 2307.46 * 10³⁶ kg
Explanation:
1 parsec, pc = 3.08 * 10¹⁶ m
The equation of the orbit speed can be used to calculate the doppler velocity:

making m the subject of the formula in the equation above to calculate the mass of the black hole:
.............(1)
<u>For M84:</u>
r = 8 pc = 8 * 3.08 * 10¹⁶
r = 24.64 * 10¹⁶ m
v = 400 km/s = 4 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 590.7 * 10³⁶ kg
<u>For M87:</u>
r = 20 pc = 20 * 3.08 * 10¹⁶
r = 61.6* 10¹⁶ m
v = 500 km/s = 5 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 2307.46 * 10³⁶ kg
The mass of the black hole in the galaxies is measured using the doppler shift.
The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.
a. Sweet corn and possibly d. okra.
Answer:

Explanation:
The electrostatic attraction between the nucleus and the electron is given by:
(1)
where
k is the Coulomb's constant
Ze is the charge of the nucleus
e is the charge of the electron
r is the distance between the electron and the nucleus
This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:
(2)
where
m is the mass of the electron
v is the speed of the electron
Combining the two equations (1) and (2), we find

And solving for v, we find an expression for the speed of the electron:
