1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fittoniya [83]
3 years ago
9

Home safety and security is an __________ process.

Engineering
1 answer:
Irina-Kira [14]3 years ago
6 0

家庭安全和安保是一个电气过程或电气过程,你在电脑上吗?我不是

You might be interested in
A reversible refrigeration cycle operates between cold and hot reservoirs at temperatures TC and TH, respectively. (a) If the co
podryga [215]

Answer:

a) T_{H} = 1.967\,^{\circ}F, b) COP_{R} = 9.105, c) T_{H} = 115.934\,^{\circ}F, d) COP_{R} = 6.995, e) T_{H} = 25.129\,^{\circ}C

Explanation:

a) The coefficient of performance of the reversible refrigeration cycle is:

COP_{R} = \frac{T_{C}}{T_{H}-T_{C}}

10 = \frac{419.67\,R}{T_{H}-419.67\,R}

The temperature of the hot reservoir is:

10\cdot T_{H} - 4196.7 = 419.67

T_{H} = 461.637\,R

T_{H} = 1.967\,^{\circ}F

b) The coefficient of performance is:

COP_{R} = \frac{273.15\,K}{303.15\,K-273.15\,K}

COP_{R} = 9.105

c) The temperature of the hot reservoir can be determined with the help of the following relation:

\frac{Q_{C}}{Q_{H}-Q_{C}} = \frac{T_{C}}{T_{H}-T_{C}}

\frac{500\,BTU}{600\,BTU-500\,BTU} = \frac{479.67\,R}{T_{H}-479.67\,R}

5 = \frac{479.67\,R}{T_{H}-479.67\,R}

5\cdot T_{H} - 2398.35 = 479.67

T_{H} = 575.604\,R

T_{H} = 115.934\,^{\circ}F

d) The coefficient of performance is:

COP_{R} = \frac{489.67\,R}{559.67\,R-489.67\,R}

COP_{R} = 6.995

e) The temperature of the cold reservoir is:

8.9 = \frac{268.15\,K}{T_{H}-268.15\,K}

8.9\cdot T_{H} - 2386.535 = 268.15

T_{H} = 298.279\,K

T_{H} = 25.129\,^{\circ}C

8 0
2 years ago
This problem demonstrates aliasing. Generate a 512-point waveform consisting of 2 sinusoids at 200 and 400-Hz. Assume a sampling
aalyn [17]

Answer and Explanation:

clear all; close all;  

N=512;  

t=(1:N)/N;

fs=1000;  

f=(1:N)*fs/N;

x= sin(2*pi*200*t) + sin(2*pi*400*t);  

y= sin(2*pi*200*t) + sin(2*pi*900*t);

for n = 1:20  

a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)))

b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)))  

c(n) = sqrt(a(n).^2+b(n).^2)  

theta(n) =-(360/(2*pi))*atan(b(n)./a(n));  

end  

plot(f(1:20),c(1:20),'rd');

disp([a(1:4),b(1:4),c(1:4),theta(1:4)])

8 0
3 years ago
Two engineers are to solve an actual heat transfer problem in a manufacturing facility. Engineer A makes the necessary simplifyi
deff fn [24]

Answer:

Engineer A results will be more accurate

Explanation:

Analytical method is better than numerical method. Engineer A has used analytical method and therefore his results will be more accurate because he used simplified method. Engineer B has used software to solve the problem related to heat transfer his results will be approximate.

5 0
3 years ago
Input signal to a controller is​
alexgriva [62]

Answer:

were the cord plugs in

Explanation:

4 0
3 years ago
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
3 years ago
Other questions:
  • Two infinite extent current sheets exist at z = −3.0 m and at z = +3.0 m. The top sheet has a uniform current
    11·1 answer
  • The y-component of velocity for a certain 2-D flow field is given as u = 3xy + x2 . Determine the x-component of velocity if the
    12·1 answer
  • The heat flux through a 1-mm thick layer of skin is 1.05 x 104 W/m2. The temperature at the inside surface is 37°C and the tempe
    8·1 answer
  • The engine of a 2000kg car has a power rating of 75kW. How long would it take (seconds) to accelerate from rest to 100 km/hr at
    10·1 answer
  • Explain the differences among sand, silt, and clay, both in their physical characteristics and their behavior in relation to bui
    15·1 answer
  • The line touching the circle at a point ....................... is known as ........................... .
    12·1 answer
  • Find the dryness fraction, specific volume and internal energy of steam at 7bar nd enthalpy 2600kj/kh. (0.921,0.2515m³/kg , 2420
    5·1 answer
  • I need solution fast plesss​
    9·1 answer
  • . Bơm kiểu piston tác dụng đơn có áp suất p=0,64 Mpa và lưu lượng Q=3,5 l/s. Xác định tốc độ quay của trục bơm và công suất của
    7·1 answer
  • The side area of the door shell that is concealed when the door is closed is called the:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!