Explanation:
It represents the direction of flow of positive charge but is treated as a scalar quantity because current follows the laws of scalar addition and not the laws of vector addition. The angle between the wires carrying current does not affect the total current in the circuit.
Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance

Where, d = distance
A = amplitude
Put the value into the formula


Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
There are correlation and causation between the force of the finger and the movement of the books
Length of the pipe = 0.39 m
Number of harmonics = 3
Now there are 3 loops so here we can say


now here at the center of the pipe it will form Node
we need to find the distance of nearest antinode
So distance between node and its nearest antinode will be


So the distance will be 6.5 cm
The answer is b
300,000 km