1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
2 years ago
10

1. A student pushes horizontally on a book with a force of 2 N, which causes the book to slide at a constant velocity. What is t

he force of friction on the book?
Physics
1 answer:
Cloud [144]2 years ago
8 0

Answer:

The horizontal forces are equal in size and opposite in direction. They are balanced, so the horizontal resultant force is zero. This means that there is no horizontal acceleration just a horizontal constant speed. If a submarine is not moving horizontally, then there are no horizontal forces.

I hope it helps.

You might be interested in
A container of an ideal gas at 1 atm is compressed to 1/3 its volume, with the temperature held constant, what is its final pres
Sati [7]

Answer:

wla na

Explanation:

hindi kasi magaling sa physic

6 0
2 years ago
Read 2 more answers
100 meters toward the shore in 25 seconds
Rzqust [24]

Answer:

The speed of a turtle is 4m/s

Explanation:

speed = distance/time

distance = 100m

time = 25s

s = 100/25

= 4m/s

6 0
3 years ago
On a Vernier Caliper, how do you know which mark to use on the very top scale?
madreJ [45]

<u>Answer</u>

To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use<em>. </em>


<u>Explanation</u>

A vernier caliper is an instrument that is used to measure the diameter of small circular objects such as diameter of a wires, thickness of an iron sheet.

The objects to be measured is place between the jaws of the calipers.

The vernier scale has two scales, the vernier scale and the main scale which is the very top scale.<em> To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use. </em>

4 0
3 years ago
A 20 KeV electron emits two bremsstrahlung photons as it is being brought to rest in two successive decelerations. The wavelengt
Degger [83]

Answer:

λ₁ = 87.5 10⁻¹² m ,  λ₂ =  2.175 10⁻¹⁰ m,    E₂ = 5.8 10³ eV

Explanation:

In this case you can use the law of conservation of energy, all the energy of the electron is converted into energized emitted photons

Let's reduce to the SI system

          E₀ = 20 10³ eV (1.6 10⁻¹⁹ J / 1eV) = 3.2 10⁻¹⁵ J

          Δλ = 1.30 A = 0.13 nm = 0.13 10⁻⁹ m

          Ef = E₁ + E₂

         E₀ = Ef

         E₀ = E₁ + E₂

The energy can be found with the Planck equation

          E = h f

          c = λ f

          f = c / λ

          E = hc / λ

They indicate that the wavelength of the second photon is

 

           λ₂ =  λ₁ +0.130 10⁻⁹

We replace

           E₀ = hv / λ₁ + hc / ( λ₁ + 0.130 10⁺⁹)

           E₀ / hv = 1 / λ₁ + 1 / ( λ₁ + 0.13 10⁻⁹)

          3.2 10⁻¹⁵ / (6.63 10⁻³⁴ 3 10⁸) = ( λ₁ + 0.13 10⁻⁹ +  λ₁) /  λ₁ ( λ₁ + 0.13 10⁻⁹)

          1.6 10¹⁰ ( λ₁² +0.13 10⁻⁹  λ₁) = 2  λ₁ + 0.13 10⁻⁹

           λ₁² + 0.13 10⁻⁹  λ₁ = 1.25 10⁻¹⁰  λ₁ + 8.125 10⁻²¹

            λ₁² + 0.005 10⁻⁹  λ₁ = 8.125 10⁻²¹

            λ₁² + 5 10⁻¹²  λ₁ - 8.125 10⁻²¹ = 0

Let's solve the second degree equation

            λ₁ = [-5 10⁻¹² ±√((5 10⁻¹²)² + 4 8.125 10⁻²¹)] / 2

    λ₁ = [-5 10⁻¹² ±√(25 10⁻²⁴ +32.5 10⁻²¹)] / 2 = [-5 10⁻¹² ±√ (32525 10⁻²⁴)] / 2

             λ₁ = [-5 10⁻¹² ± 180 10⁻¹²] / 2

            λ₁ = 87.5 10⁻¹² m

             λ₂ = -92.5 10⁻¹² m

We take the positive wavelength

The wavelength of the photons is

            λ₁ = 87.5 10⁻¹² m

            λ₂ =  λ₁ + 0.13 10⁻⁹

             λ₂ = 87.5 10⁻¹² + 0.13 10⁻⁹

             λ₂ = 0.2175 10⁻⁹ m = 2.175 10⁻¹⁰ m

The energy after the first deceleration is

            E₂ = E₀ –E₁

            E₂ = E₀ –hc / λ₁

            E₂ = 3.2 10⁻¹⁵ - 6.63 10⁺³⁴ 3 10⁸ / 87.5 10⁻¹²

            E₂ = 3.2 10⁻¹⁵ - 2.27 10⁻¹⁵

             E₂ = 0.93 10⁻¹⁵ J

             E₂ = 0.93 10⁻¹⁵ J (1 eV / 1.6 10⁻¹⁹ J)

             E₂ = 5.8 10³ eV

7 0
3 years ago
Use the galvanometers to determine the amount and direction of the induced current. Which galvanometer is
docker41 [41]

Answer:

Option B

Explanation:

Looking at the 3 galvanometer readings given above, for galvanometer A, the reading is -2 mA.

For galvanometer B, the reading is 4 mA.

While for galvanometer C, the reading is -5 MA

Thus, option B is correct.

4 0
3 years ago
Other questions:
  • What is the surface area to volume ratio of this cube
    6·1 answer
  • A certain automobile is 6.0 m long if at rest. If it is measured to be 4.8 m long while moving, its speed is:
    6·1 answer
  • Which situation describes the highest rate of power
    8·2 answers
  • What is the key characteristic for double displacement
    7·1 answer
  • What if someone refers to a crystal's " habit" what are they referring to?
    7·1 answer
  • The Coriolis effect is the result of which action?
    10·1 answer
  • A bicyclist starts at point P and travels around a triangular path that takes her through points Q and R before returning to the
    11·1 answer
  • A 1500 kg car drives around a flat, 50 m diameter track, starting from rest. The drive wheels supply a small but steady 525 N fo
    15·1 answer
  • Two vectors have magnitudes 3 and 4 . how are the directions of the two vectors related if: a/the sum has magnitude 7.0 ​
    9·1 answer
  • Which of the following
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!