Answer:
1.) 274.5v
2.) 206.8v
Explanation:
1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.
The potential difference and charge across EACH capacitor will be 
V = Voe
Where Vo = initial voltage 
e = natural logarithm = 2.718
For the first capacitor 2.50 µF,
V = Vo × 2.718
746 = Vo × 2.718
Vo = 746/2.718
Vo = 274.5v
To calculate the charge, use the below formula. 
Q = CV
Q = 2.5 × 10^-6 × 274.5
Q = 6.86 × 10^-4 C
For the second capacitor 6.80 µF 
 V = Voe
562 = Vo × 2.718
Vo = 562/2.718
Vo = 206.77v
The charge on it will be 
Q = CV
Q = 6.8 × 10^-6 × 206.77
Q = 1.41 × 10^-3 C
B.) Using the formula V = Voe again 
165 = Vo × 2.718
Vo = 165 /2.718
Vo = 60.71v
Q = C × 60.71
Q = C
 
        
             
        
        
        
I think the answer will be A
        
                    
             
        
        
        
Answer:
I THINK IT'S <em>D.</em><em>.</em><em>.</em><em>.</em>
<em>HOPE </em><em>SO</em>
 
        
             
        
        
        
Answer: The electric field is: a) r<a , E0=; b) a<r<b E=ρ (r-a)/εo;
 c) r>b E=ρ b (b-a)/r*εo
Explanation: In order to solve this problem we have to use the Gaussian law in diffrengios regions.
As we know, 
∫E.dr= Qinside/εo
For r<a --->Qinside=0 then E=0
for a<r<b er have
E*2π*r*L= Q inside/εo       in this case Qinside= ρ.Vol=ρ*2*π*r*(r-a)*L
E*2π*r*L =ρ*2*π*r* (r-a)*L/εo
E=ρ*(r-a)/εo
Finally for r>b
E*2π*r*L =ρ*2*π*b* (b-a)*L/εo
E=ρ*b* (b-a)*/r*εo