Answer:
18 radians
Explanation:
The computation is shown below:
As we know that
Torque = Force × Moment arm
= 1N × 1M
= 1N-M
Torque = 

Now

Here t = 1 minutes = 60 seconds
Answer:
The tension is 75.22 Newtons
Explanation:
The velocity of a wave on a rope is:
(1)
With T the tension, L the length of the string and M its mass.
Another more general expression for the velocity of a wave is the product of the wavelength (λ) and the frequency (f) of the wave:
(2)
We can equate expression (1) and (2):
=
Solving for T
(3)
For this expression we already know M, f, and L. And indirectly we already know λ too. On a string fixed at its extremes we have standing waves ant the equation of the wavelength in function the number of the harmonic
is:

It's is important to note that in our case L the length of the string is different from l the distance between the pin and fret to produce a Concert A, so for the first harmonic:

We can now find T on (3) using all the values we have:


the answer of this question is helium
Answer:N=322.53 rpm
Explanation:
Given
Linear velocity (v)=1.25 m/s
Position from center is 3.7 cm
we know



and 


N=322.53 rpm