Answer:
0.247 μC
Explanation:
As both sphere will be at the same level at wquilibrium, the direction of the electric force will be on the x axis. As you can see in the picture below, the x component of the tension of the string of any of the spheres should be equal to the electric force of repulsion. And its y component will be equal to the weight of one sphere. We can use trigonometry to find the components of the tensions:



The electric force is given by the expression:

In equilibrium, the distance between the spheres will be equal to 2 times the length of the string times sin(50):

And k is the coulomb constan equal to 9 *10^9 N*m^2/C^2. q1 y q2 is the charge of each particle, in this case, they are equal.


O 0.247 μC
In order to tell a river lock attendant that you wish to go through the lock, you should <span>sound one prolonged blast followed by one short blast.
You should wait about 400 feet away from the lock and wait for the flashing light signal that allows you to enter.
Also note that </span><span>commercial traffic always have the first priority in entering the locks.</span>
Answer:
32s
Explanation:
We must establish that by the time the police car catches up to the speeder, both have travelled a certain distance during the same amount of time. However, the police car experiences accelerated motion whereas the speeder travels at a constant velocity. Therefore we will establish two formulas for distance starting with the speeder's distance:

and the police car distance:

Since they both travel the same distance x, we can equal both formulas and solve for t:

Two solutions exist to the equation; the first one being 
The second solution will be:

This result allows us to confirm that the police car will take 32s to catch up to the speeder
Answer:
The answer is B
Explanation:
It's past tense and dad is singular