Major Plates
Africa Plate
Antarctic Plate
Indo-Australian Plate
Australian Plate
Eurasian Plate
North American Plate
South American Plate
<span>Pacific Plate
Minor Plates
There are dozens of smaller plates, the seven largest of which are:
</span>Arabian Plate
Caribbean Plate
Juan de Fuca Plate
Cocos Plate
Nazca Plate
Philippine Sea Plate
<span>Scotia Plate</span>
<u>Answer:</u> The molality of the solution is 0.1 m.
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute = 27.1 g
= Molar mass of solute = 27.1 g/mol
= Mass of solvent = 100 g
Putting values in above equation, we get:

Hence, the molality of the solution is 0.1 m.
Answer:
the molarity is 3.68 moles/L
Explanation:
the molality of the solution of sucrose is
m= moles of glucose / Kg of solvent (water)= 6.81 ,
since the molecular weight of glucose is 180.156 gr/mole , then per each kilogram of solvent there is
6.81 moles*180.156 gr/mole + 1000 gr of water = 2226.86 gr of solution
from the density
volume of solution = mass of solution/density = 2286.86 gr / 1.2 gr/ml = 1855.71 ml
therefore there is 1000 gr of water in 1855.71 ml
then the molarity M is
M= moles of glucose / L of solution = (moles of glucose / Kg of solvent) * (Kg of solvent/L of solution) = 6.81 moles/Kg * 1Kg/1.85 L = 3.68 moles/L
M= 3.68 moles/L
Note:
- Would be wrong in this case to assume density of water = 1 Kg/L since the solution is heavily concentrated in glucose and therefore the density of water deviates from its pure value.
Migratory birds would not be able to utilize any other habitat in their place and a lot of animals wouldn't either so those are some negative impacts hope this helps