Answer:
Explanation:
The melting point of a substance is the temperature at which its melt. The state of a substance is dependent on it's melting temperature. Generally, melting point above 25 °C is a solid.
This means phenol is a solid
Duodecane has melting point below 25 °C hence it is either a liquid or gas. However its boiling point of 216 °C means it would require higher temperature to boil it. Since 25 °C is less than 216 °C it means that it would remain in the liquid state.
Methane has melting point below 25 °C hence it is either a liquid or gas. However its boiling point of -164 °C means it boils easily even at very low temperatures. Since 25 °C is greater than -164 °C it means that it would exist in the gaseous state
The answer is: the distance between two nuclei is 2.35×10⁻¹⁰ m.
r(Na⁺) = 1.16×10⁻¹⁰ m; radius of sodium cation.
r(F⁻) = 1.9×10⁻¹⁰ m; radius of fluoride anion.
d(NaF) = r(Na⁺) + r(F⁻).
d(NaF) = 1.16×10⁻¹⁰ m + 1.9×10⁻¹⁰ m.
d(NaF) = 2.35×10⁻¹⁰ m; distance between two nuclei.
The sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice.
Do you have a screen shot or picture of the problem?
Theoretical Yield is an Ideal yield with 100 % conversion of reactant to product. It is in fact a paper work.
While,
Actual Yield is the yield which is obtained experimentally. It is always less than theoretical yield because it is not possible to have 100% conversion of reactants into products. Even some amount of product is lost while handling it during the process.
Percentage Yield is Calculated as,
%age Yield = Actual Yield / Theoretical Yield × 100
Data Given:
Actual Yield = 0.104 g
Theoretical Yield = 0.110 g
Putting Values,
%age Yield = 0.104 g / 0.110 g × 100
%age Yield = 94.54 %