Answer:
1.023 J / g°C
Explanation:
Mass, m = 37.9 g
Temperature increase (change) = 25.0°C
Heat = 969 J
Specific heat capacity , c= ?
The relationship between these quantities is given by the equation;
H = mcΔT
c = H / mΔT
c = 969 / (37.9 * 25)
c = 969 / 947.5 = 1.023 J / g°C
When one observes the phase of matter of water, one observes a physical property of matter.
Answer:
A. Na₂SO₄ and HCl
C. Polar solutes are soluble in polar solvents but are insoluble in non-polar solvents Non-polar solutes are insoluble in polar solvents but are are soluble in non-polar solvents
Ionic solutes are soluble in polar solvents but are insoluble in non-polar solvents.
Like dissolves like simply means that molecules of substances having similar chemical properties dissolve in each other
Explanation:
A. Ionic substances like Na₂SO₄ are composed of charged particles called ions. These ions are either positively charged or negatively charged, therefore, they are attracted to substances of opposite charges. Also, polar molecules like HCl contains two oppositely charged ends. A polar solvent consists of molecules with two oppositely charged ends, therefore, ionic substances as well polar substances dissolve in them according to the concept of like dissolves like.
Gasoline being non-polar will only dissolve in like substances, polar solvents.
C. Polar solutes are soluble in polar solvents but are insoluble in non-polar solvents Non-polar solutes are insoluble in polar solvents but are are soluble in non-polar solvents
Ionic solutes are soluble in polar solvents but are insoluble in non-polar solvents.
The statement "Like dissolves like" simply means that molecules of substances having similar chemical properties dissolve in each other. For example gasoline, a non-polar substance will dissolve only in a non-polar solvent like kerosene. Also, HCl, a polar molecule will dissolve in a polar solvent like water.
Answer:
The second answer, because when something saturated, it has the maximum possible number of hydrogen atoms.
<u>Answer:</u> The concentration of
at equilibrium is 0.00608 M
<u>Explanation:</u>
As, sulfuric acid is a strong acid. So, its first dissociation will easily be done as the first dissociation constant is higher than the second dissociation constant.
In the second dissociation, the ions will remain in equilibrium.
We are given:
Concentration of sulfuric acid = 0.025 M
Equation for the first dissociation of sulfuric acid:
![H_2SO_4(aq.)\rightarrow H^+(aq.)+HSO_4^-(aq.)](https://tex.z-dn.net/?f=H_2SO_4%28aq.%29%5Crightarrow%20H%5E%2B%28aq.%29%2BHSO_4%5E-%28aq.%29)
0.025 0.025 0.025
Equation for the second dissociation of sulfuric acid:
![HSO_4^-(aq.)\rightarrow H^+(aq.)+SO_4^{2-}(aq.)](https://tex.z-dn.net/?f=HSO_4%5E-%28aq.%29%5Crightarrow%20H%5E%2B%28aq.%29%2BSO_4%5E%7B2-%7D%28aq.%29)
<u>Initial:</u> 0.025 0.025
<u>At eqllm:</u> 0.025-x 0.025+x x
The expression of second equilibrium constant equation follows:
![Ka_2=\frac{[H^+][SO_4^{2-}]}{[HSO_4^-]}](https://tex.z-dn.net/?f=Ka_2%3D%5Cfrac%7B%5BH%5E%2B%5D%5BSO_4%5E%7B2-%7D%5D%7D%7B%5BHSO_4%5E-%5D%7D)
We know that:
![Ka_2\text{ for }H_2SO_4=0.01](https://tex.z-dn.net/?f=Ka_2%5Ctext%7B%20for%20%7DH_2SO_4%3D0.01)
Putting values in above equation, we get:
![0.01=\frac{(0.025+x)\times x}{(0.025-x)}\\\\x=-0.0411,0.00608](https://tex.z-dn.net/?f=0.01%3D%5Cfrac%7B%280.025%2Bx%29%5Ctimes%20x%7D%7B%280.025-x%29%7D%5C%5C%5C%5Cx%3D-0.0411%2C0.00608)
Neglecting the negative value of 'x', because concentration cannot be negative.
So, equilibrium concentration of sulfate ion = x = 0.00608 M
Hence, the concentration of
at equilibrium is 0.00608 M