Ice melts when heat energy causes the molecules to move faster, breaking the hydrogen bonds between molecules to form liquid water.
Answer:
The answer to your question is 25.2 g of acetic acid.
Explanation:
Data
[Acetic acid] = 0.839 M
Volume = 0.5 L
Molecular weight = 60.05 g/mol
Process
1.- Calculate the number of moles of acetic acid
Molarity = moles / volume
-Solve for moles
moles = Molarity x volume
-Substitution
moles = (0.839)(0.5)
-Result
moles = 0.4195
2.- Calculate the mass of acetic acid using proportions and cross multiplications
60.05 g ----------------------- 1 mol
x ----------------------- 0.4195 moles
x = (0.4195 x 60.05) / 1
x = 25.19 g
3.- Conclusion
25.2 g are needed to prepare 0.500 L of Acetic acid 0.839M
Chemical
bonds between atoms in reactants undergo change during a chemical
reaction.
<span>The substance (or substances) initially involved in a </span>chemical reaction<span> <span>are
called reactants or reagents. </span></span>Chemical reactions<span> <span>are
usually characterized by a </span></span>chemical<span> change,
and they yield one or more products, which usually have properties different
from the reactants.</span>
The correct answer between all
the choices given is the last choice or letter D. I am hoping that this answer
has satisfied your query and it will be able to help you in your endeavor, and
if you would like, feel free to ask another question.
The average atomic weight is, from the name itself, the average weight of all its naturally occurring isotopes. All you have to do is multiple the abundance of each isotope with its individual mass, then add them altogether.
Mass = (0.10*55)+(0.15*56)+(.75*57)
<em>Mass = 56.65 amu</em>
Insertion of human genes into bacteria, also known as recombinant DNA technology, is used for the large scale production of human insulin, using bacteria as the insulin-producing machinery. The gene containing information for insulin production is inserted into the DNA of bacteria, which transcribe and translate it, and insulin is produced.