Answer:
144cm²
Explanation:
Given dimensions:
Length x breadth x thickness
18cm x 8cm x 5cm
The widest part of this figure will be the face containing the length and the breadth.
The breadth is the width of the figure;
Area of the widest part = length x breadth = 18cm x 8cm = 144cm
The area of the widest part of the figure is 144cm²
The average atomic mass of the imaginary element : 47.255 amu
<h3>Further explanation </h3>
The elements in nature have several types of isotopes
Isotopes are elements that have the same Atomic Number (Proton)
Atomic mass is the average atomic mass of all its isotopes
Mass atom X = mass isotope 1 . % + mass isotope 2.% ..
isotope E-47 47.011 amu, 87.34%
isotope E-48 48.008 amu, 6.895
isotope E-49 50.009 amu, 5.77%
The average atomic mass :

The electron dot diagram for the oxygen atom shows six electrons around the symbol of the atom.
<h3>What is the electron dot diagram?</h3>
The electron dot diagram is the diagram of atoms of elements showing only the valence electrons present in the atom represented with dots.
The electron dot diagram for the oxygen atom is drawn as follows:
- The number of valence electrons in oxygen atom is determined; valence electrons = 6
- The symbol for the oxygen atom is written
- The valence electrons are shown as dots around the symbol of the element.
In conclusion, the electron dot diagram uses dots around the symbol of an atom to show the valence electrons in the atom.
Learn more about electron dot diagram at: brainly.com/question/5835591
#SPJ1
S and S²⁻ do not have the outer subshell fully filled with electrons.
Explanation:
We look at electronic configurations:
Ca 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² - the outer subshell 4s² is fully-filled with electrons
S 1s² 2s² 2p⁶ 3s² 3p⁴ - the outer subshell 3p⁴ is not fully-filled with electrons
Zn²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s⁰ - here the 4s subshell is higher in energy than 3d subshell so will consider 3d¹⁰ the out subshell which is fully-filled with electrons
S²⁻ 1s² 2s² 2p⁶ 3s² 3p² - the outer subshell 3p² is not fully-filled with electrons
Ca²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ - the outer subshell 3p⁶ is fully-filled with electrons
Learn more about:
electron configurations
brainly.com/question/5524513
brainly.com/question/6991243
#learnwithBrainly
Answer:
ptic fiber communication and satellite communication are the leading technologies which are revolutionizing the world of telecommunications. Both technologies have their advantages and limitations which make them suitable for certain type of applications. This article will provide an overview of optic fiber and satellite communication technologies and present a comparison of the features and related issues.
Optic Fiber Communication
Optic Fiber communication transmits information by sending pulses of light (using laser) through an optic fiber. The low signal loss in optic fibers and high data rate of transmission systems, allow signals with high data rates (exceeding several Gbps) to travel over long distances (more than 100 km) without a need of repeater or amplifier. Moreover, using wavelength division multiplexing (WDM) allows a single fiber to carry multiple signals (upto 10 different signals) of multi-Gbps transmissions. Optic Fiber communication offers extremely high bandwidth, immunity to electromagnetic interference, non-existent delays and immunity from interception by external means. In the 1980s and 1990s, the continents were linked together using undersea optic fiber bringing about a paradigm shift in the global telecommunications.
These advancements in optic fiber communication has resulted in decrease of satellite communications for several types of communications. For instance, transmission between fixed locations or point-to-point communications, where large bandwidths are required (such as transoceanic telephone systems) are made through optic fiber instead of using satellite communication. Optic Fiber communication is also used to transmit telephone signals, Internet communication, LAN (Gigabit LAN) and cable television signals.
Satellite Communication
Satellite communications use artificial satellites as relays between a transmitter and a receiver at different locations on Earth. Satellite systems allow users to bypass typical carrier offices and to broadcast information to multiple locations. Communications satellites are used for radio, TV, telephone, Internet, military and other applications. There are more than 2,000 satellites around Earth’s orbit, being used for communication by both government and private organizations.
Communication Satellites are LOS (line-of-sight) microwave systems with a repeater. These satellites rotate around the earth with the speed of earth and are known as geostationary satellites. The limitations of antenna size also limits focusing capability making the coverage for a single satellite transmitter very large. This makes satellite communication ideal for TV and radio services as the signal has to flow from a single point to many points in a single direction. The large distance of satellites from the earth (about 22,300 miles) results in delays which adversely effects two-way communication like mobile conversations. Low earth orbit satellites can be used for two-way mobile communication because less power is required to reach those satellites.
Explanation: