Answer:
The answer is below
Explanation:
Momentum is used to measure the quantity of motion in an object. Momentum is the product of mass and velocity.
Momentum = mass * velocity
The principle of conservation of momentum states that momentum cannot be created or destroyed but can be transferred. Therefore the momentum before and after an action is equal.
Initial momentum = Final momentum
Let m be the mass of the diver, M be the mass of the raft, u be the initial velocity of the diver, U be the initial velocity of the raft, v be the final velocity of the diver and V be the final velocity of the raft.
m = 71 kg, M = 500 kg, v = 6 m/s
Initial both the raft and diver are at rest, hence u and U is zero, hence:
mu + MU = mv + MV
71(0) + 500(0) = 71(6) + 500(V)
0 = 426 + 500(V)
500(V) = -426
V = -426/500
V = -0.852 m/s
Answer:
The height will be 4 times.
Explanation:
Given that,
The speed at the bottom of the hill doubled.
We need to calculate the height
Using conservation of energy




Therefore,

Here, m and g are constant
Hence, The height will be 4 times.
Answer:
here we can say that acceleration of the satellite is same as the gravitational field due to Earth at that location
Explanation:
As we know that gravitational field is defined as the force experienced by the satellite per unit of mass
so we will have

now in order to find the acceleration of the satellite we know by Newton's II law

so we will have

so here we can say that acceleration of the satellite is same as the gravitational field due to Earth at that location