Answer:
M.A = load/ effort
1200N/400N
= 3
velocity ratio= radius of wheel/radius of Axle
40cm/10cm
=4
efficiency= 3/4*100
75%
Answer:
the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Explanation:
The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

15 - (1/200) L = 5 + (1/200) L
15 - 5 = (1/200) L + (1/200) L
10 = (2/200) L
(10*200)/2 = L
1000 = L
Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:
W = 15 - (1/200) L
W = 15 - (1/200) 1000
W = 10
Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Answer:
The velocity of the truck after this elastic collision is 15.7 m/s
Explanation:
It is given that,
Mass of the car, 
Mass of the truck, 
Initial velocity of the car,
Initial velocity of the truck, u₂ = 0
After the collision the velocity of the car is, v₁ = -11 m/s
Let v₂ is the velocity of the truck after this elastic collision. Using the conservation of momentum as :

So, the velocity of the truck after this elastic collision is 15.7 m/s. Hence, the correct option is (c).
Answer:
25.6 m/s
Explanation:
Draw a free body diagram of the sled. There are two forces acting on the sled:
Normal force pushing perpendicular to the hill
Weight force pulling straight down
Take sum of the forces parallel to the hill:
∑F = ma
mg sin θ = ma
a = g sin θ
a = (9.8 m/s²) (sin 38.0°)
a = 6.03 m/s²
Given:
v₀ = 0 m/s
a = 6.03 m/s²
t = 4.24 s
Find: v
v = at + v₀
v = (6.03 m/s²) (4.24 s) + (0 m/s)
v = 25.6 m/s
Explanation:
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. When the interaction ceases, the two objects no longer experience the force.