Answer:
The resolution of an analog-to-digital converter is 24.41 mV
Explanation:
Resolution of an analog-to-digital = (analogue signal input range)/2ⁿ
where;
n is the number or length of bit, and in this question it is given as 12
Also, the analogue signal input range is 100V
Resolution of an analog-to-digital = 100V/2¹²
2¹² = 4096
Resolution of an analog-to-digital = 100V/4096
Resolution of an analog-to-digital = 0.02441 V = 24.41 mV
Therefore, the resolution of an analog-to-digital converter is 24.41 mV
Answer:
Part a)

Part b)


Part c)


Explanation:
Part a)
frequency of light will not change with change in medium but it will depend on the source only
so here frequency of light will remain same in both water and glass and it will be same as that in air



Part b)
As we know that the refractive index of water is given as

so the wavelength in the water medium is given as



Similarly the refractive index of glass is given as

so the wavelength in the glass medium is given as



Part c)
Speed of the wave in water is given as



Speed of the wave in glass is given as



Answer:
force is that push or pull of the body that change or tends to change the state of rest or uniform motion in a straight line.
Explanation:
hope it is helpful to u
Answer:
a) L = 3.29 10⁻⁴ H, b)U = 5.33 10⁻² J
Explanation:
a) The inductance is a solenoid this given carrier
L =
The magnetic field inside the solenoid is
B = μ₀
hence the magnetic flux
Ф_B = B. A = μ₀
we substitute in the expression of inductance
L = N² μ₀ A /l
let's find the area of each turn
A = π r²
A = π 0.02²
A = 1.2566 10⁻³ m²
let's calculate
L = 250² 4π 10⁻⁷ 1.2566 10⁻² / 0.3
L = 3.29 10⁻⁴ H
b) The stored energy is
U = ½ L i²
let's calculate
U = ½ 3.29 10⁻⁴ 18²
U = 5.33 10⁻² J
Refraction is a phenomenon which results when a ray of light enters from one medium to another medium. When a ray of light enters from denser medium to rarer medium, it bends away from the normal. The laws of refraction are: The incident ray, the refracted ray and the normal all lie in the same plane.