The different types of microscopes are all necessary because not all experiments require the same level of magnification. For dissections low magnification is sufficient, so a dissecting microscope works very well, while for viewing single cells the 1000 fold magnification of a compound light microscope is more accurate.
The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.
Surface tension under water results from greater attraction of liquid molecules to each other, due to a process called cohesion, than to molecules in the air, due to a process called adhesion.
Answer:
Conductivity meter
Explanation:
All of the other choices measure pH and can tell you when the pH changes, which is how you know the neutralization reaction has occurred. A conductivity meter does not measure pH.