Answer:
The final velocity of the runner at the end of the given time is 2.7 m/s.
Explanation:
Given;
initial velocity of the runner, u = 1.1 m/s
constant acceleration, a = 0.8 m/s²
time of motion, t = 2.0 s
The velocity of the runner at the end of the given time is calculate as;

where;
v is the final velocity of the runner at the end of the given time;
v = 1.1 + (0.8)(2)
v = 2.7 m/s
Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.
As we know that here no air resistance while ball is moving in air
So here we will say that
initial total energy = final total energy

here we know that
(as it will be on ground at initial and final position)
so we will say

since mass is always conserved
so we will say that final speed of the ball must be equal to the initial speed of the ball
so we have

Let the time be t.
so,In time t , distance travelled by 1st cyclist = 12.6 t
distance travelled by 2nd cyclist = 9.2t + 0.5 (1.5) t^2
Now, cyclist 1st is already 11.4 m ahead of 2nd cyclist.
so, 9.2t + 0.5 (1.5) t^2 = 11.4 + 12.6t
find t :
t = 6.77 sec
Answer with Explanation:
We are given that
Velocity,v=24 m/s west
Acceleration,a=
(N of W)
Horizontal component of acceleration=Tangential acceleration
Tangential acceleration,
Radial acceleration=Vertical acceleration=

Radial acceleration,



Time,


The answer here is <span>The government is expansive</span>