Answer:
N2 + 3H2 → 2NH3. 14 moles a. If 6 mol of H2 are consumed, how many moles of NH3 are produced? ... a 3 mol H₂. 4. How many moles of nitrogen are needed to make 11 moles of NH3? Il mol NH₃ x Imol Na = 15.5
The dichloromethane (DCM) has less density than water and also the polarity of water is much more than DCM. So the mixture of water and dichloromethane will always be a heterogeneous mixture. In the mixture dichloromethane will be always up of the water layer. The volume of the separatory funnel which contains the mixture of DCM and water must have to be more than the total volume of the liquids thus the volume of the funnel will be more than (50+50) = 100mL.
The caution have to consider during the separation are-
1. The separatory funnel have to shake well with lid and have to settle down for some times until the two liquid separated.
2. The lid should be open very slowly as the vapor pressure of DCM is more and it will float on the water.
3. After this the stopcock should be opened and slowly the water will come out first followed by DCM.
b) It is based on atomic properties as alkali metals requires 7 more electrons to complete their outer orbit. And they try to give those electrons to other elements to obtain noble gas configuration.
Noble gases are the gases which do not react easily with anything. They are also called as Inert gases, and belongs to group 18 of the periodic table.
Alkali metals are the substances which are found in Group I of a periodic table. Mostly the elements which are present are:
Properties of alkali metals are: Soft, shiny reactive metals. They are soft enough to cut with knife. Metals react with water and air quickly and gets tarnish, so pure metals are stored in container by dipping them in oil to prevent oxidation.
To know more about Alkali metals, refer to this link:
brainly.com/question/18153051
#SPJ4
Answer:
MgCl2 > C4H9OH > CH4 > C3H8.
Explanation:
Alkanes do not form hydrogen bonds and are insoluble in polar solvents e.g water. The hydrogen bonds between water molecules are move away from an alkane molecule and this worsens as their Carbon chain / molecular weight increases.
MgCl2 is soluble in water. Water essentially breaks down the ionic crystal lattice and the resulting solution is slightly basic.
Alcohols are generally soluble in water and this is because of the -OH group and its ability to form hydrogen bonds with water molecules. As applied to alkanes, as the carbon chain in the alkyl group increases, the solubility decreases.
From the most soluble to the least soluble,
MgCl2 > C4H9OH > CH4 > C3H8.