Explanation:
using the formula: S=ut+½gt², where u=0, S=?, g=8m/s², t=10seconds.
S=ut+½gt² ("ut" term will cancel because u=0).
=> S= ½gt²
=>S = ½×8×10²
=>S = 4×100
=>S = 400m .
Therefore, the distance traveled by the body in 10s is 400m.
hope this helps you.
Answer:
(b) The electrons, because they have the smaller momentum and, hence, the larger de Broglie wavelength
Explanation:
de Broglie wavelength λ = h / m v
Since both electrons and protons have same velocity , momentum mv will be less for electrons because mass of electron is less .
for electron , momentum is less so . Therefore de Broglie wavelength λ will be more for electrons .
Amount of diffraction that is angle of diffraction is proportional to λ
Therefore electrons having greater de Broglie wavelength will show greater diffraction.
"Constant velocity" is practically a definition for zero acceleration.
Given Information:
Number of turns = N = 1130 turns
Length of solenoid = L = 0.430 m
Magnetic field = B = 1.0x10⁻⁴ T
Required Information:
Current = I = ?
Answer:
I = 0.0302 A
Explanation:
The current flowing in the solenoid winding can be found using
I = BL/μ₀N
Where μ₀ is the permeability of free space, N is the number of turns, B is the magnetic field and L is the length of solenoid
I = 1.0x10⁻⁴*0.430/4πx10⁻⁷
*1130
I = 0.0302 A
or
I = 30.28 mA