In a closed system, heat should be conserved which means that the heat produced in the calorimeter is equal to the heat released by the combustion reaction. We calculate as follows:
Heat of the combustion reaction = mC(T2-T1)
= 1 (1.50) (41-21)
= 30 kJ
Answer:
1.) 3
2.) 60 CM
Explanation:
1. Density=
= 
2. Length*Width*Height=3*10*2
Answer:
scale. Mercury thermometers can be used to determine body, liquid, and vapor temperature.
The chalk particles embed themselves into the small pores on the surface.
Although a chalkboard seems smooth to the touch, it is quite rough at the microscopic level, with <em>pores</em> that reach below the surface.
When you drag chalk across the board, friction causes small particles of chalk to rub off onto the surface.
If you leave the markings for a long time, some of the chalk particles will work their way into the pores.
A brush will remove the surface particles, but <em>it will not be able to get at the particles in the pores</em>.
Answer:
3.47 ×10^-10
Explanation:
The equation of the reaction is 2Cr3+(aq) + Pb(s)------->2Cr2+(aq) + Pb2+(aq)
A total of two moles of electrons were transferred in the process. The chromium was reduced while the lead was oxidized. Hence the lead species will constitute the oxidation half equation and the chromium will constitute the reduction half equation.
E°cell = E°cathode - E°anode
E°cathode = -0.41 V
E°anode = -0.13 V
E°cell = -0.41 -(-0.13) = -0.28 V
From
E°cell = 0.0592/n log K
n= 2, K= the unknown
-0.28 = 0.0592/2 log K
log K = -0.28/0.0296
log K = -9.4595
K = Antilog ( -9.4595)
K= 3.47 ×10^-10