1.180
2.-900
3.20
4.8
Hope this helps
7.4x10^23 = molecules of silver nitrate sample
6.022x10^23 number of molecules per mole (Avogadro's number)
Divide molecules of AgNO3 by # of molecules per mol
7.4/6.022 = 1.229 mols AgNO3 (Sig Figs would put this at 1.3)
(I leave off the x10^23 because they both will divide out)
Use your periodic table to find the molar weight of silver nitrate.
107.868(Ag) + 14(N) + 3(16[O]) = 169.868g/mol AgNO3
Now multiply your moles of AgNO3 with your molar weight of AgNO3
1.229mol x 169.868g/mol = 208.767g AgNO3
Answer:
One with a few kinds is more likely to become unstable.
Explanation:
A lack of biodiversity means there is a lower chance of them having traits that enable them to adapt to a changing environment. A lack of biodiversity is usually caused by humans. It could be the result of habitat loss, invasive species, overexploitation, pollution, or climate change.
Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M