Answer:
18,1 mL of a 0,304M HCl solution.
Explanation:
The neutralization reaction of Ba(OH)₂ with HCl is:
2 HCl + Ba(OH)₂ → BaCl₂ + 2 H₂O
The moles of 17,1 mL≡0,0171L of a 0,161M Ba(OH)₂ solution are:
= 2,7531x10⁻³moles of Ba(OH)₂
By the neutralization reaction you can see that 2 moles of HCl reacts with 1 mole of Ba(OH)₂. For a complete reaction of 2,7531x10⁻³moles of Ba(OH)₂ you need:
= 5,5062x10⁻³moles of HCl.
The volume of a 0,304M HCl solution for a complete neutralization is:
= 0,0181L≡18,1mL
I hope it helps!
Hey there!
D = m / V
13.6 = 76.2 / V
V = 76.2 / 13.6
V = 5.602 mL
Answer:
The correct answer is:
<em>(1) It is important that the sample is dissolved in just enough hot solvent. </em>
Explanation:
The process of recrystallization is important to eliminate the impurities and to obtain better crystals of the solid. The solvent used to perform the recrystallization must have a high dissolution power of the substance to be recrystallized and a low dissolution power of the impurities. This is in order to eliminate most impurities. Furthermore, <em>It is important that the sample is dissolved in just enough hot solvent </em>because this should be easy to remove after the recrystallization and the crystal should form easily when the solution cools. Also, it is better to add the hot solvent to solubilize the crystals and keep the impurities insoluble, instead of adding the cold solvent and heating the solution. Additionally, the process of cooling the solution must be done slowly to obtain large and fewer crystals. A fast ice-cooling will form smaller crystals.
The reaction of baking soda or baking powder with the liquid in the batter: These ingredients react together and cause air bubbles to form. ... Heat of the oven: The heat of the oven can cause baking powder to react further and cause more air bubbles, and the heat also sets the structure of the cake.
I believe the answer is Canada!