Answer:
the shooting angle ia 18.4º
Explanation:
For resolution of this exercise we use projectile launch expressions, let's see the scope
R = Vo² sin (2θ) / g
sin 2θ = g R / Vo²
sin 2θ = 9.8 75/35²
2θ = sin⁻¹ (0.6)
θ = 18.4º
To know how for the arrow the tree branch we calculate the height of the arrow at this point
X2 = 75/2 = 37.5 m
We calculate the time to reach this point since the speed is constant on the X axis
X = Vox t
t2 = X2 / Vox = X2 / (Vo cosθ)
t2 = 37.5 / (35 cos 18.4)
t2 = 1.13 s
With this time we calculate the height at this point
Y = Voy t - ½ g t²
Y = 35 sin 18.4 1.13 - ½ 9.8 1,13²
Y = 6.23 m
With the height of the branch is 3.5 m and the arrow passes to 6.23, it passes over the branch
The time described above is known as the waves Period.
The time which it takes for a particle to complete one full cycle is known as the period. Period is normally measured in seconds. Frequency on the other hand is the number of cycles which are completed in a given period of time e.g a second. periodic time T is given by reciprocal of frequency (1/f).
Answer:
option (a)
Explanation:
To make a galvanometer into voltmeter, we have to connect a high resistance in series combination.
The voltmeter is connected in parallel combination with teh resistor to find the voltage drop across it.
An ideal voltmeter has very high resistance that means it has a resistance as infinity.
Answer:
The final acceleration becomes (1/3) of the initial acceleration.
Explanation:
The second law of motion gives the relationship between the net force, mass and the acceleration of an object. It is given by :

m = mass
a = acceleration
According to given condition, if the mass of a sliding block is tripled while a constant net force is applied. We need to find how much does the acceleration decrease.

Let a' is the final acceleration,

m' = 3m



So, the final acceleration becomes (1/3) of the initial acceleration. Hence, this is the required solution.
Explanation:
(a) Frequency of radar energy, 
The relation between frequency and wavelength is given by :




or

(b) If wavelength, 




or
f = 1.2 GHz
Hence, this is the required solution.