Answer:
V=15.3 m/s
Explanation:
To solve this problem, we have to use the energy conservation theorem:

the elastic potencial energy is given by:

The work is defined as:

this work is negative because is opposite to the movement.
The gravitational potencial energy at 2.5 m aboves is given by:

the gravitational potential energy at the ground and the kinetic energy at the begining are 0.

A force of 43.8 N is required to stretch the spring a distance of 15.5 cm = 0.155 m, so the spring constant <em>k</em> is
43.8 N = <em>k</em> (0.155 m) ==> <em>k</em> = (43.8 N) / (0.155 m) ≈ 283 N/m
The total work done on the spring to stretch it to 15.5 cm from equilibrium is
1/2 (283 N/m) (0.155 m)² ≈ 3.39 J
The total work needed to stretch the spring to 15.5 cm + 10.4 cm = 25.9 cm = 0.259 m from equilibrium would be
1/2 (283 N/m) (0.259 m)² ≈ 9.48 J
Then the additional work needed to stretch the spring 10.4 cm further is the difference, about 6.08 J.
Well formation of metallic bond depends on free electrons.smaal sized atoms hold their electrons more firmly as compared to large size atoms ,this z due to distance of outer shell electrons by nucleus..in this way no of free electrons affect strength of metallic bond..smaal sized atoms release less free electrons..
Answer
Explanation:
The question was incomplete as the events are not given in the question. However the answer to your question is given as follows. The correct order of the events from youngest (top) to oldest (bottom) is given as follows.
Moon formation
↑
Earth formation
↑
Nuclear fusion in protosun
↑
BigBang
The vessel must also have red and green side lights.
The red light is placed on the port (left) side of the boat while the green light is placed on the starboard (right) side of the vehicle. The white lights are on both the masthead (front) and stern (rear) of the boat, unless the vessel is less than 39.4 feet, in which case the front and rear white light may be combined as only one white light.