c)pattern
Explanation:
A general change such as increasing or decreasing numbers is called a pattern. A pattern shows a structured way of implementing a change.
- Patterns can be a form of increment in values by adding a particular number at intervals.
- It can be a division, multiplication or subtraction of a consistent number.
- Patterns can provide insight into understanding a number system or a group of numbers.
- Sequences are usually derived from patterns.
Learn more:
Patterns brainly.com/question/4694425
#learnwithBrainly
I’m pretty sure it’s abode and cathode
Answer:
C₆H₁₂O₆ and O₂ are reactant.
CO₂ and H₂O are products.
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + ATP
Explanation:
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide
This process use respiratory electron transport chain as electron acceptor instead of oxygen. It is mostly occur in prokaryotes. Its main advantage is that it produce energy (ATP) very quickly as compared to aerobic respiration.
Steps involve in anaerobic respiration are:
Glycolysis
Glycolysis is the first step of both aerobic and anaerobic respiration. It involve the breakdown of one glucose molecule into pyruvate and 2ATP.
Fermentation
The second step of anaerobic respiration is fermentation. It involve the fermentation of pyruvate into lactic acid or alcohol depending upon the organism in which it is taking place. There is no ATP produced, however carbon dioxide is released in this step.
1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1
Chromium is strange because it moves on to the 4s orbital instead of filling the 3d orbital with that last electron. Tricky.
Mark as brainliest if this helped! :)
1. This is a combustion reaction.<span>
<span>Combustion reactions can happen with the </span>presence of O</span>₂ <span>gas. O₂<span>
reacts with another element or compound and </span></span>oxidize<span> it. Here ethanol reacts with O₂<span> and produces </span></span>CO₂ and H₂O as products.<span> <span>Combustion is also called as </span></span>burning. <span>
2.
Reaction will shift to right. <span>
</span><span>If more CH</span>₃CH₂OH is added to the system, then the</span> amount of CH₃CH₂OH will increase.<span> <span>Then the equilibrium in the system </span></span>will be broken.<span> <span>To make the equilibrium again, the </span></span>added CH₃CH₂OH should be removed.<span> To do that system will consume more CH</span>₃CH₂<span>OH to make products which helps to decrease
the amount of ethanol. Hence,
the reaction will shift to right.<span>
3. The reaction
will shift to right.</span><span>
</span><span>If the water is extracted from the system, the </span>amount of water will decrease. <span>That means the </span>amount of products decrease. Then the system will try to gain equilibrium by increasing the water. To increase water the forward reaction should be enhanced. <span>Hence, the</span> reaction will shift to right.<span>
4. The reaction
will shift to right.
</span><span>This is an </span>exothermic reaction <span>since it </span>produces heat. If the produced heat is removed, then the system will be cold. To maintain the temperature, system has to increase the amount of heat produced. Then, the forward reaction should be
enhanced. Hence, the reaction
will shift to right.<span>
5. The Le
Chatelier's principle.
</span>Le Chatelier's principle says if a
condition changes in a system which was in an equilibrium state, the system
will try to gain equilibrium by correcting the changed condition back to
normal. Most of industries which make
chemicals use this principle</span>