Answer:
u didn't give us the multiple hoice answer
Explanation:
Answer:
As, the temperature decreased from 40.0 °C to 0.0 °C an amount will be recrystallized and precipitated as solid crystals in the water (51.0 g - 14.0 g = 37.0 g) and 14.0 g will be dissolved in water.
Explanation:
- Firstly, we must mention that:
The solubility of KNO₃ per 100.0 g of water at 40.0 °C = 63.0 g.
The solubility of KNO₃ per 100.0 g of water at 0.0 °C = 14.0 g.
- So, at 40.0 °C, 51.0 g of KNO₃ will be completely dissolved in water.
- <em>As, the temperature decreased from 40.0 °C to 0.0 °C an amount will be recrystallized and precipitated as solid crystals in the water (51.0 g - 14.0 g = 37.0 g) and 14.0 g will be dissolved in water.</em>
Answer:
False. In a gas, particles are in continual straight-line motion. The kinetic energy of the molecule is greater than the attractive force between them, thus they are much farther apart and move freely of each other.
Explanation:
Hope this helps! :)
Answer:
d.3.0
Explanation:
Step 1: Calculate the final volume of the solution
The final volume is equal to the sum of the volumes of the initial HCl solution and the volume of distilled water.
V₂ = 100 mL + 100 mL = 200 mL
Step 2: Calculate the final concentration of HCl
We will use the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂ = 0.002 M × 100 mL/200 mL = 0.001 M
Step 3: Calculate the pH of the final HCl solution
Since HCl is a strong acid, [H⁺] = HCl. We will use the definition of pH.
pH = -log [H⁺] = -log 0.001 = 3