You can determine it by paying attention to the unique characteristics that could only be found at heart's tissue, such as :
- looks striated or stripped
- The bundles are breached like tree but connected at both ends
hope this helps
Because atoms are the small and can't be seen by your eyes. It is so small that scientists need to use a model. A model help scientists study things. So, scientists needs to study atoms using models.
Answer:
333.7g of antifreeze
Explanation:
Freezing point depression in a solvent (In this case, water) occurs by the addition of a solute. The law is:
ΔT = Kf × m × i
Where:
ΔT is change in temperature (0°C - -20°C = 20°C)
Kf is freezing point depression constant (1.86°C / m)
m is molality of solution (moles solute / 0.5 kg solvent -500g water-)
i is Van't Hoff factor (1, assuming antifreeze is ethylene glycol -C₂H₄(OH)₂)
Replacing:
20°C = 1.86°C / m × moles solute / 0.5 kg solvent × 1
5.376 = moles solute
As molar mass of ethylene glycol is 62.07g/mol:
5.376 moles × (62.07g / 1mol) = <em>333.7g of antifreeze</em>.
Answer : Half life and radioactive decay are inversely proportional to each other.
Explanation :
The mathematic relationship between the half-life and radioactive decay :
................(1)
where,
N = number of radioactive atoms at time, t
= number of radioactive atoms at the beginning when time is zero
e = Euler's constant = 2.17828
t = time
= decay rate
when
then the number of radioactive decay become half of the initial decay atom i.e
.
Now substituting these conditions in above equation (1), we get

By rearranging the terms, we get

Now taking natural log on both side,

By rearranging the terms, we get

This is the relationship between the half-life and radioactive decay.
Hence, from this we conclude that the Half life and radioactive decay are inversely proportional to each other. That means faster the decay, shorter the half-life.