Answer:
Explanation:
The rate of change in volume is proportional to the surface area:
dV/dt = kA
Integrating:
V = kAt + C
At t=0, V = s, so:
s = kA(0) + C
C = s
Therefore:
V = kAt + s
Answer:
a) r = 6122 m and b) v = 32.5 m / s
Explanation:
a) The train in the curve is subject to centripetal acceleration
a = v2 / r
Where v is The speed and r the radius of the curve
They indicate that the maximum acceleration of the person is 0.060g,
a = 0.060 g
a = 0.060 9.8
a = 0.588 m /s²
Let's calculate the radius
v = 216 km / h (1000m / 1km) (1 h / 3600 s =
v = 60 m / s
r = v² / a
r = 60² /0.588
r = 6122 m
b) Let's calculate the speed, for a radius curve 1.80 km = 1800 m
v = √a r
v = √( 0.588 1800)
v = 32.5 m / s
Answer:
Explanation:
The same current flows through each part of a series circuit. The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops.
I = 0.33 A
= 330 mA
Capacity, P = I × t
= 2050/330
= 6.21 hours
Time, t = 6.21 hours.
The tundra because it's growing season is too short.
Answer:
The resultant velocity of the plane relative to the ground is;
150 kh/h north
Explanation:
The flight speed of the plane = 210 km/h
The direction of flight of the plane = North
The speed at which the wind is blowing = 60 km/h
The direction of the wind = South
Therefore, representing the speed of the plane and the wind in vector format, we have;
The velocity vector of the plane = 210.
The velocity vector of the wind = -60.
Where, North is taken as the positive y or
direction
The resultant velocity vector is found by summation of the two vectors as follows;
Resultant velocity vector = The velocity vector of the plane + The velocity vector of the wind
Resultant velocity vector = 210.
+ (-60.
) = 210.
- 60.
= 150.
The resultant velocity vector = 150.
Therefore, the resultant velocity of the plane relative to the ground = 150 kh/h north.