Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Substance is some matter (it can be solid liquid or gas) that has its own properties.. everything in this world are substances...
like for example: the bread that we consume has - wheat ..yeast.. sugar.. salt or some other substances
。☆✼★ ━━━━━━━━━━━━━━ ☾
2 x 3 = 6
Thus there are 6 atoms of oxygen in this molecule.
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
Answer:

Explanation:
The work function of the metal corresponds to the minimum energy needed to extract a photoelectron from the metal. In this case, it is:

So, the energy of the incoming photon hitting on the metal must be at least equal to this value.
The energy of a photon is given by

where
h is the Planck's constant
c is the speed of light
is the wavelength of the photon
Using
and solving for
, we find the maximum wavelength of the radiation that will eject electrons from the metal:

And since
1 angstrom = 
The wavelength in angstroms is

Answer:
2.1406 ×
m/sec
Explanation:
we know that energy is always conserved
so from the law of energy conservation

here V is the potential difference
we know that mass of proton = 1.67×
kg
we have given speed =50000m/sec
so potential difference 
now mass of electron =9.11×
so for electron

so the velocity of electron will be 2.1406×
m/sec