Answer:
(a) The speed of the target proton after the collision is:
, and (b) the speed of the projectile proton after the collision is:
.
Explanation:
We need to apply at the system the conservation of the linear momentum on both directions x and y, and we get for the x axle:
, and y axle:
. Now replacing the value given as:
,
for the projectile proton and according to the problem
are perpendicular so
, and assuming that
, we get for x axle:
and y axle:
, then solving for
, we get:
and replacing at the first equation we get:
, now solving for
, we can find the speed of the projectile proton after the collision as:
and
, that is the speed of the target proton after the collision.
Answer:
1 joule = 0.737 foot-pound
Joule is the unit of work.
1 J = 1 N·m
In SI units
1 J = 1 kg· m/s²
0.737 foot-pound is the amount of work to raise 0.737 pounds one foot or raising one pound to 0.737 ft.
Answer:
Explanation:
a) Power consumption is 4100 J/min / 60 s/min = 68.3 W(atts)
work done raised the potential energy
b) 75(9.8)(1000) / (3(3600)) = 68.055555... 68.1 W
c) efficiency is 68.1 / 68.3 = 0.99593... or nearly 100%
Not a very likely scenario.
Answer
(C).
When there is an angle between the two directions, the cosine of the angle must be considered.
Step by step Solution
The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.
The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.
The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is
.
Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the
meaning that there is no work done in the direction perpendicular to the motion.
The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is 