Answer:
Super insulation are obtained by using layers of highly reflective sheets separated by glass fibers in an vacuumed space. Radiation heat transfer between any of the surfaces is inversely proportional to the number of sheets used and thus heat lost by radiation will be very low by using these highly reflective sheets which will an effective way of heat transfer.
Explanation:
Answer:
Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.
Explanation:
As a PC board designer, I would sometimes spend a certain amount of time making traces have shorter routes, or fewer layer changes or bends. (I wanted to make the layout "pretty.") In some cases, these changes are superficial, affecting the appearance only. In some cases, they are functional, reducing crosstalk or emissions or susceptibility to interference.
I deal with a web site that seems to be changing all the time (Brainly). In many cases, the same information is rearranged on the page—a superficial change. In other cases, the information being displayed changes, or the way that certain information is accessed changes. These are functional changes. (Sometimes, they "enhance performance," and sometimes they don't, IMO.)
In short ...
<em>Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.</em>
Answer:
21.456 kJ/h
Explanation:
See the figure attached. In this case


Coefficient of performance in heat pump is defined by




Now it is necessary to change units, remember that Watt (W) is defined as J/s


Answer:
The temperature of the first exit (feed to water heater) is at 330.15ºC. The second exit (exit of the turbine) is at 141ºC. The turbine Power output (if efficiency is %100) is 3165.46 KW
Explanation:
If we are talking of a steam turbine, the work done by the steam is done in an adiabatic process. To determine the temperature of the 2 exits, we have to find at which temperature of the steam with 1000KPa and 200KPa we have the same entropy of the steam entrance.
In this case for steam at 3000 kPa, 500°C, s= 7.2345Kj/kg K. i=3456.18 KJ/Kg
For steam at 1000 kPa and s= 7.2345Kj/kg K → T= 330.15ºC i=3116.48KJ/Kg
For steam at 200 kPa and s= 7.2345Kj/kg K → T= 141ºC i=2749.74KJ/Kg
For the power output, we have to multiply the steam flow with the enthalpic jump.
The addition of the 2 jumps is the total power output.