This situation has a basis such that the solid sphere and the hoop has the same mass. The analysis could be made<span> backwards . The ball will decelerate fastest, so not roll as high. The sphere will accelerate faster, but this also means it decelerates faster on the way up. Hence the answer is the hoop if the masses are equal </span>
Answer:
88.34 N directed towards the center of the circle
Explanation:
Applying,
F = mv²/r................... Equation 1
F = Force needed to keep the mass in a circle, m = mass of the mass, v = velocity of the mass, r = radius of the circle.
But,
v = 2πr/t................... Equation 2
Where t = time, π = pie
Substitute equation 2 into equation 1
F = m(2πr/t)²/r
F = 4π²r²m/t²r
F = 4π²rm/t²............. Equation 3
From the question,
Given: m = 0.8 kg, r = 0.7 m, t = 0.5 s
Constant: π = 3.14
Substitute these values into equation 3
F = 4(3.14²)(0.7)(0.8)/0.5²
F = 88.34 N directed towards the center of the circle
protons, neutrons, and electrons.