Answer:but-1-ene
Explanation:This is an E2 elimination reaction .
Kindly refer the attachment for complete reaction and products.
Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.
Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .
As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.
Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.
2-butene is more thermodynamically6 stable as compared to 1-butene
The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.
If you are asking for the word for this definition it is a <span>attraction by the two nucluei</span>
Answer ; The question is missing in some details, but here are he details ;
The two naturally occurring isotopes of bromine are
81Br (80.916 amu, 49.31%) and
79Br (78.918 amu, 50.69%).
The two naturally occurring isotopes of chlorine are
37Cl (36.966 amu, 24.23%) and
35Cl (34.969 amu, 75.77%).
Bromine and chlorine combine to form bromine monochloride, BrCl.
Explanation:
The detaile calculation is as shown in the attachment.
Answer:
Mass = 255 g
Explanation:
Given data:
Number of moles of nitrogen = 7.5 mol
Mass of ammonia formed = ?
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
Now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
7.5 : 2/1×7.5 = 15
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 15 mol × 17 g/mol
Mass = 255 g
Answer:
Can you please post a pictah.
Explanation: