distance to the star Betelgeuse: 640 ly
As we know that

also we know that


So the distance of Betelgeuse = 640 ly

distance to the star VY Canis Majoris: 


distance to the galaxy Large Magellanic Cloud: 49976 pc


now we have


distance to Neptune at the farthest: 4.7 billion km

now the order of distance from least to greatest is as following
1. distance to Neptune at the farthest
2. distance of Betelgeuse
3. distance to the star VY Canis Majoris
4. distance to the galaxy Large Magellanic Cloud
The density of the material would be 4.1 g/cm³.
Density is calculated by dividing the mass by the volume.
D=m÷v
D=45 g÷11 cm³
D=4.1 g/cm³
As the satellite panels extend, the angular velocity decreases due to drag force, and hence it will cause a decrease in the angular momentum of the satellite.
<h3>
What is angular momentum?</h3>
Angular momentum is defined as the quantity of rotation of a body, which is the product of mass, velocity and radius.
L = mvr
L = mωr²
where;
- m is mass of the object
- v is velocity
- r is radius
- ω is angular velocity
As the satellite panels extend, the angular velocity decreases due to drag force, and hence it will cause a decrease in the angular momentum of the satellite.
Learn more about angular momentum here: brainly.com/question/4126751
#SPJ1
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
Answer: The initial force is reduced a factor 1/4 when the separation between charge is doubled
Explanation: As it well known the electric force between two charges is given by:
Finitial=k*q1*q2/d^2 where d is the distance between charges and k is a constant
if the distance is doubled this means 2*dinitial thus the new force is equal to F initial* 1/4