BAS might be an improperly capitalized: BAs, BaS
PTF2 might be an improperly capitalized: PtF2
BAF2 might be an improperly capitalized: BaF2
PTS might be an improperly capitalized: PtS
Physical changes are changes affecting the form of a chemical substance, but not its chemical composition. Physical changes are used to separate mixtures into their component compounds, but can not usually be used to separate compounds into chemical elements or simpler compounds.
Ex: cutting a paper, gaining weight, cutting hair
pH solution = 8.89
<h3>Further explanation</h3>
Given
The concentration of HBr solution = 1.3 x 10⁻⁹ M
Required
the pH
Solution
HBr = strong acid
General formula for strong acid :
[H⁺]= a . M
a = amount of H⁺
M = molarity of solution
HBr⇒H⁺ + Br⁻⇒ amount of H⁺ = 1 so a=1
Input the value :
[H⁺] = 1 x 1.3 x 10⁻⁹
[H⁺] = 1.3 x 10⁻⁹
pH = - log [H⁺]
pH = 9 - log 1.3
pH = 8.89
A quantitative observation is not necessarily more useful than a non-quantitative one. However, quantitative observations do allow one to find trends.
(a), the sun rising is a non-quantitative observation.
(b), knowledge of the numerical relationship between the weight on the Moon and on Earth, is a quantitative observation.
(c), watching ice float on water does not involve a measurement; therefore, it must be a qualitative observation.
(d) the fact that we know that the water pump won’t work for depths more than 34 feet makes it quantitative. Again, seeing numbers is a giveaway that it’s a quantitative <span>observation. Quantitative is where you deal with numbers.</span>
<h3>Answer:</h3>
36 moles of Hydrogen
<h3>Solution:</h3>
The molecular formula of Glucose is,
C₆H₁₂O₆
As clear from molecular formula, each mole of Glucose contains 12 moles of Hydrogen atoms.
Therefore,
1 mole of C₆H₁₂O₆ contains = 12 moles of Hydrogen
So,
3.0 moles of C₆H₁₂O₆ will contain = X moles of Hydrogen
Solving for X,
X = (3.0 mol × 12 mol) ÷ 1 mol
X = 36 moles of Hydrogen