To solve this problem we use the general kinetic equations.
We need to know the time it takes for the car to reach 130 meters.
In this way we have to:

Where
= initial position
= initial velocity
= acceleration
= time
= position as a function of time

.
We use the quadratic formula to solve the equation.

t = 6.63 s and t = -17.1 s
We take the positive solution. This means that the car takes 6.63 s to reach 130 meters.
Then we use the following equation to find the final velocity:

Where:
= final speed
The final speed of the car is 27.25 m/s
Its 1.73793151243 as a whole but if rounded it is 1.74
The answer would be Power
Complete Question
A voltaic cell is constructed with two 
electrodes. The two cell compartment have
and
respectively.
What is the cell emf for the concentrations given? Express your answer using two significant figures
Answer:
The value is 
Explanation:
Generally from the question we are told that
The concentration of
at the cathode is
The concentration of
at the anode is
Generally the the cell emf for the concentration is mathematically represented as
![E = E^o - \frac{0.0591}{2} log\frac{[Zn^{2+}]a}{ [Zn^{2+}]c}](https://tex.z-dn.net/?f=E%20%3D%20%20E%5Eo%20-%20%5Cfrac%7B0.0591%7D%7B2%7D%20log%5Cfrac%7B%5BZn%5E%7B2%2B%7D%5Da%7D%7B%20%5BZn%5E%7B2%2B%7D%5Dc%7D)
Generally the
is the standard emf of a cell, the value is 0 V
So
![E = 0 - \frac{0.0591}{2} * log[\frac{ 2.00*10^{-2}}{1.6} ]](https://tex.z-dn.net/?f=E%20%3D%20%200%20%20-%20%20%5Cfrac%7B0.0591%7D%7B2%7D%20%20%2A%20log%5B%5Cfrac%7B%202.00%2A10%5E%7B-2%7D%7D%7B1.6%7D%20%5D)
=> 
The period of the wave is the reciprocal of its frequency.
1 / (5 per second) = 0.2 second .
The wavelength is irrelevant to the period. But since you
gave it to us, we can also calculate the speed of the wave.
Wave speed = (frequency) x (wavelength)
= (5 per second) x (1cm) = 5 cm per second