The Moon s escape speed will be smaller than Earth's.
The minimum speed that is required for an object to free itself from the gravitational force exerted by a massive object.
The formula of escape speed is
where
v is escape velocity
G is universal gravitational constant
M is mass of the body to be escaped from
r is distance from the center of the mass
we can say that,
Escape speed depends on the gravity of the object trying to hold the spacecraft from escaping.
we know that,
The Moon's surface gravity is about 1/6th as powerful or about 1.6 meters per second per second.
since, v ∝ g
The Moon s escape speed will be smaller than Earth's.
Learn more about escape speed here:
<u>brainly.com/question/15318861</u>
#SPJ4
<span>d
The mass is doubled which means that both the momentum and kinetic energy are also doubled. Also the normal force that's acting along with the coefficient of kinetic friction is also doubled. So the friction that's working to slow down the crate is doubled. So the crate will have double the kinetic energy that needs to be dissipated, but the rate of dissipation is also doubled, so the total time required to dissipate the kinetic energy is the same. And since both crates start out with the same velocity and since they'll lose energy (and velocity) at the same proportional rate, they'll take the same distance to slide to a stop.</span>
There is no gravity in orbit/space to pull them toward a certain area so they have full movement and that is why they float
Answer:
The acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Explanation:
The centripetal acceleration acts on a body when it is performing a circular motion.
Here, a point on the bicycle is performing circular motion as the rotation of the wheel produces a circular motion.
The centripetal acceleration of a point moving with a velocity
and at a distance of
from the axis of rotation is given as:

Here, 
∴ 
Therefore, the acceleration of a point on the wheel is 11.43 m/s² acting radially inward.