Answer:
Explanation:
a )
If it is totally absorbed pressure is calculated as follows .
Pressure = I / c where I is intensity of light falling .
= 1000 / 3 x 10⁸
= 3.33 x 10⁻⁶ N / m²
b ) weight of tritium atom
= 3 x 1.67 x 10⁻²⁷ kg
acceleration = force / mass
= 3.33x 10⁻⁶ / 3 x 1.67 x 10⁻²⁷
= .6646 x 10²¹ m /s²
= 66.46 x 10¹⁹ m / s²
At the present time, the only way we know of that light can get shifted
toward the blue end of the spectrum is the Doppler effect ... wavelengths
appear shorter than they should be when the source is moving toward us.
IF that's true in the case of the Andromeda galaxy, it means the galaxy is
moving toward us.
We use the same reasoning to conclude that all the galaxies whose light is red-shifted are moving away from us. That includes the vast majority of all galaxies that we can see, and it strongly supports the theory of the big bang
and the expanding universe.
If somebody ever comes along and discovers a DIFFERENT way that light
can get shifted to new, longer or shorter wavelengths, then pretty much all
of modern Cosmology will be out the window. There's a lot riding on the
Doppler effect !
Answer:
a = 2.72 [m/s2]
Explanation:
To solve this problem we must use the following kinematics equation:

where:
Vf = final velocity = 1200 [km/h]
Vo = initial velocity = 25 [km/h]
t = time = 2 [min] = 2/60 = 0.0333 [h]
1200 = 25 + (a*0.0333)
a = 35250.35 [km/h2]
if we convert these units to units of meters per second squared
![35250.35[\frac{km}{h^{2} }]*(\frac{1}{3600^{2} })*[\frac{h^{2} }{s^{2} } ]*(\frac{1000}{1} )*[\frac{m}{km} ] = 2.72 [\frac{m}{s^{2} } ]](https://tex.z-dn.net/?f=35250.35%5B%5Cfrac%7Bkm%7D%7Bh%5E%7B2%7D%20%7D%5D%2A%28%5Cfrac%7B1%7D%7B3600%5E%7B2%7D%20%7D%29%2A%5B%5Cfrac%7Bh%5E%7B2%7D%20%7D%7Bs%5E%7B2%7D%20%7D%20%5D%2A%28%5Cfrac%7B1000%7D%7B1%7D%20%29%2A%5B%5Cfrac%7Bm%7D%7Bkm%7D%20%5D%20%3D%202.72%20%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D)
Answer:
The amount of work we could expect to get out of the system per second = 28,000J/s
Explanation:
Given the power supplied to the system as 28kW;
Energy = power / time
At very best, the amount of work we could expect to get out of the system per second = 28,000 W / 1 second = 28,000J/s
Therefore, for a a furnace which supplies 28kW of thermal power at 300C to an engine and exhausts waste energy at 20C.
At the very best, the amount of work we could expect to get out of the system per second = 28,000J/s