Answer:
Hello the answer for the volcanos is here below:
7. Pipe
8. Crater
9. Vent
10. lava flow
11. magma chamber
Hope this helps :)
This problem is providing two reduction-oxidation (redox) reactions in which the oxidized and reduced species can be identified by firstly setting the oxidation number of each element:
Reaction 1: 2K⁺I⁻ + H₂⁺O₂⁻ ⇒2K⁺O⁻²H⁺ + I₂⁰
Reaction 2: Cl₂⁰ + H₂⁰ ⇒ 2H⁺CI⁻
Next, we can see that iodine is being oxidized and oxygen reduced in reaction #1 and chlorine is being reduced and hydrogen oxidized in reaction #2 because the oxidized species increase the oxidation number whereas the reduced ones decrease it.
In such a way, the correct choice is C.
Learn more:
The average Kenectic energy
1) Calculate the number of moles of O2 (g) in 300 cm^3 of gas at 298 k and 1 atm
Ideal gas equation: pV = nRT => n = pV / RT
R = 0.0821 atm*liter/K*mol
V = 300 cm^3 = 0.300 liter
T = 298 K
p = 1 atm
=> n = 1 atm * 0.300 liter / [ (0.0821 atm*liter /K*mol) * 298K] = 0.01226 mol
2) The reaction of a metal with O2(g) to form an ionic compound (with O2- ions) is of the type
X (+) + O2 (g) ---> X2O or
2 X(2+) + O2(g) ----> X2O2 = 2XO or
4X(3+) + 3O2(g) ---> 2X2O3
In the first case, 1 mol of metal react with 1 mol of O2(g); in the second case, 2 moles of metal react with 1 mol of O2(g); in the third, 4 moles of X react with 3 moles of O2(g)
So, lets probe those 3 cases.
3) Case 1: 1 mol of metal X / 1 mol O2(g) = x moles / 0.01226 mol
=> x = 0.01226 moles of metal X
Now you can calculate the atomic mass of the hypotethical metal:
1.15 grams / 0.01226 mol = 93.8 g / mol
That does not correspond to any of the metal with valence 1+
So, now probe the case 2.
4) Case 2:
2moles X metal / 1 mol O2(g) = x / 0.01226 mol
=> x = 2 * 0.01226 = 0.02452 mol
And the atomic mass of the metal is: 1.15 g / 0.02452 mol = 46.9 g/mol
That is similar to the atomic mass of titanium which is 47.9 g / mol and whose valece is 2+.
4) Case 3
4 mol meta X / 3 mol O2 = x / 0.01226 => x = 0.01226 * 4 / 3 = 0.01635
atomic mass = 1.15 g / 0.01635 mol = 70.33 g/mol
That does not correspond to any metal.
Conclusion: the identity of the metallic element could be titanium.
The surface would be flat