Answer:
384.2 K
Explanation:
First we convert 27 °C to K:
- 27 °C + 273.16 = 300.16 K
With the absolute temperature we can use <em>Charles' law </em>to solve this problem. This law states that at constant pressure:
Where in this case:
We input the data:
300.16 K * 1600 m³ = T₂ * 1250 m³
And solve for T₂:
T₂ = 384.2 K
The statement which is true is
Fluorine is more reactive than nitrogen because fluorine needs only one electron to fill its outermost shell.
<u><em>Explanation</em></u>
Fluorine has electron configuration of 1S²2S²2P⁵ while nitrogen has 1S²2S²2P³ electron configuration.
The 2P sub shell for nitrogen is half filled therefore it is sable than fluorine.
since p orbital can hold a maximum of 6 electrons ,Fluorine requires 1 electron to completely fill it's 2P sub shell which make it more reactive than nitrogen.
The heat cause 300g water temperature increase from 20 to 26 celcius. The heat transferred would be: 300g * (26 °C -20 °C) *4.2 joule/gram °C= 7560J
The unknown substance is added to the water, so its final temperature should be the same as the water. The calculation would be:
7560J= 124g * (100-26)* specific heat
specific heat= 7560J / 124g / 74 °C= 0.8238 J/gram °C
The ion composition of Magnesium is 12,10, 2+.
Magnesium is a chemical element with symbol Mg and an atomic number 12, it has 12 protons, and 12 electrons with a chemical configuration of 2:8:2. It requires to loose two electrons to form a stable configuration forming a cation (positively charged ion) with a charge of +2 and a configuration of 2:8 ( 12 protons and 10 electrons).